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Fractionalized pair density wave in the pseudogap phase of cuprate superconductors
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The mysterious pseudogap (PG) phase of cuprate superconductors has been the subject of intense investigation
over the last 30 years, but without a clear agreement about its origin. Owing to a recent observation in
Raman spectroscopy, of a precursor in the charge channel, on top of the well known fact of a precursor in
the superconducting channel, we present here a novel idea: the PG is formed through a Higgs mechanism, where
two kinds of preformed pairs, in the particle-particle and particle-hole channels, become entangled through a
freezing of their global phase. Remarkably, this entanglement is equivalent to fractionalizing a Cooper pair
density wave (PDW) into its elementary parts; the particle-hole pair, giving rise to both density modulations and
current modulations, and the particle-particle counterpart, leading to the formation of Cooper pairs. From this
perspective, the “fractionalized PDW” becomes the central object around the formation of the pseudogap. The
“locking” of phases between the charge and superconducting modes gives a unique explanation for the unusual
global phase coherence of short-range charge modulations, observed below Tc on phase sensitive scanning
tunneling microscopy (STM). A simple microscopic model enables us to estimate the mean-field values of the
precursor gaps in each channel and the PG energy scale, and to compare them to the values observed in Raman
scattering spectroscopy. We also discuss the possibility of a multiplicity of orders in the PG phase and give an
overview of the phase diagram.
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I. INTRODUCTION

A. General introduction

The PG “phase” in the cuprate superconductors remains
one of the most enduring mysteries of condensed matter
physics. It was first observed as loss of density of states
at intermediate oxygen doping [1,2] 0.08 < p < 0.20, where
part of the Fermi surface is gapped in the antinodal (AN)
region [(0,±π ) and (±π, 0)] of the Brillouin zone, leading
to the formation of Fermi arcs (see, e.g., Refs. [3,4]). The
partial gapping of the Fermi surface is very puzzling, because
it breaks the Luttinger theorem which counts the number of
electrons in a reconfiguration of the Fermi surface. To account
for this very unusual observation, several approaches have
been put forward. The first one focuses on the proximity
to the Mott transition, and states that due to the strong
Coulomb interaction (U � 1 eV), the electron fractionalizes
into elementary parts [5–9], for example spinons and holons,
which accounts for the formation of the pseudogap. This
line of thought was developed over the years with one fa-
mous candidate: the formation of spin singlet through the
resonating-valence-bond (RVB) state [10]. A second line of
thought remarked that, in the vicinity of a localization transi-
tion, the phase of all fields fluctuates wildly [11]. Scenarios
with phase fluctuations and preformed but incoherent Cooper
pairs were thus proposed [12,13]. These scenarios were very
strong in describing the fluctuations above Tc. For example,
the unchanged AN spectroscopic gap across Tc, up to T ∗, has

been understood as the presence of preformed pairs, or su-
perconducting fluctuations, above Tc [14,15]. Unfortunately,
preformed Cooper pairs could only be observed up to a small
temperature above Tc and not up to T ∗ [16–18].

In this paper we give a second life to the preformed pair
scenario with a new idea. We propose that the PG phase
is comprised of two kinds of competing preformed pairs:
particle-particle (p-p) and particle-hole (p-h), having very
distinct symmetries, but which get entangled at T ∗ through
a freezing of their global phase. In our theory, T ∗ is a
true phase transition temperature with a broken U (1) × U (1)
gauge symmetry, the second U (1) gauge symmetry getting
broken at Tc. One U (1) corresponds to the electromagnetic
charge symmetry and the other U (1) is associated with the
gradient of the local phase of the p-h pairs. Since p-h pairs
are neutral to the electromagnetic field, the second U (1) is
identified as a neutral gauge field, minimization of which
generates a constraint between the two pairs. Remarkably,
the emergence of a neutral gauge field can be seen from
another novel parallel point of view where a PDW order
parameter fractionalizes into elementary p-p and p-h pairs
with a constraint between them and thus entangling them.
Within this parallel viewpoint, the “fractionalized” PDW can
be seen as a fundamental object lying at the origin of the
formation of the PG phase. A gauge field associated with a
neutral field resulting in a constraint is also considered in
the case of electron’s fractionalization where the constraint
is that of no double occupancy of electrons on lattice sites.
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Here, instead of fractionalizing electrons, we fractionalize an
order parameter, PDW, the one which is fragile and difficult
to stabilize in most theoretical approaches.

Each of the two preformed pairs leads to the formation of
a “primary” state at low temperatures, but our theoretical for-
mulation is generic and could accommodate for other primary
states, like antiferromagnetic stripes, thus opening space for
the solution of various debates in the PG puzzle.

B. Prescription of two kinds of preformed pairs
and fractionalized PDW

One of the recent developments in the physics of cuprate
superconductors is the ubiquitous observation of charge den-
sity modulations (CDM) in the underdoped regime. It was
first observed by STM in the superconducting phase, as
modulations inside the vortex core [19–23]. Observation of
quantum oscillations [24,25], x-ray [26–31], and NMR mea-
surements [32–35] have completed the picture. The two-
dimensional (2D) CDM have a predominantly d-wave sym-
metric form factor [23,36] and lives on the Cu-Cu bonds in a
one band picture.

Very recently, a new feature emerges in Raman spec-
troscopy which reports a precursor gap in the charge
(particle-hole) channel, observed as a peak in the B2g re-
sponse of the cuprate compound HgBa2Ca2Cu3O8+δ (Hg-
1223) [37]. A similar feature is also observed in other cuprates
like HgBa2CuO4+δ (Hg-1201) [37,38] and YBa2Cu3O6+x

(YBCO) [37]. It is shown in Ref. [37] that the spectral gap
associated with the charge order is of the same order of mag-
nitude as the superconducting gap, and that both gaps behave
in a similar way with doping, following T ∗ rather than Tc. This
very intriguing experiment is calling for a reconsideration
of the scenario of preformed pairs, but with two kinds of
preformed pairs in competition, in the p-p and p-h channels.
Due to the near degeneracy, the system hesitates energetically
between forming p-p and p-h pairs. This fact motivates our
ansatz of an entangled state of p-p and p-h pairs for the PG
state and a constraint between the two relates their energies to
the PG energy scale.

Moreover, a PDW order has been recently observed below
Tc in the halo [39] surrounding the vortex core in the cuprate
compound Bi2Sr2CaCu2O8+δ (BSCCO). This PDW occurs
with modulations both at the same wave vector as the charge
modulations and at half of its value. A PDW in the same
compound was also observed in the absence of magnetic
field using a superconducting STM tip [40]. The zero field
PDW was only observed with the same vector as charge
modulations. These observations inspired several theoretical
works [41–43] indicating their importance in the PG phase,
but with no consensus on whether the fundamental state is a
PDW or a charge ordered state. In our formulation, we provide
a viewpoint based on fractionalized PDW which is the funda-
mental object. In the PG phase, the PDW is fractionalized to
p-p pairs and p-h pairs. Only at low temperatures these two
pairs recombine and a PDW can be observed. Through this
new perspective, we reconcile the debate of the nature of the
fundamental state.

On a different side, there are growing experimental in-
dications that the PG phase sustain a “true” symmetry

FIG. 1. Schematic representation of the square planar Cu lattice
with both �i j and χi j living on nearest neighbor bonds 〈i j〉 (Cu-
Cu bonds). The site j can be either of the four nearest neighbors
of i whose coordinates are r j = ri + δ with δ = ±ûx or ± ûy where
û is the lattice translational operator. The operator d̂ gives the d-
wave character with d̂ = 1 for δ = ±ûx and d̂ = −1 for δ = ±ûy.
We have constructed the continuum field theory in Sec. II using a
coordinate system on the midpoints of the bonds, r = (ri + r j )/2.
The midpoints are shown as orange dots with “+” and “−” indicating
the d-wave character of the bonds. These midpoints constitute a tilted
square lattice (shown with dotted lines) with an antiferromagnetlike
arrangement.

broken state. Resonant ultrasound spectroscopy [44] reports
a thermodynamic phase transition at T ∗ associated with the
emergence of the PG phase. STM [45,46], anomalous Nernst
effect [47], torque-magnetometry [48], and polarized neutron
diffraction [49] measurements all indicate that the fourfold
(C4) rotational symmetry is broken at T ∗. In addition, po-
larized elastic neutron scattering [50,51] and optical second
harmonic generation [52] measurements suggest that the time
reversal symmetry and parity can be further broken at T ∗.
All of these indicate that there can be intraunit cell Q = 0
(translational symmetry preserving) orders developing at T ∗.
None of these Q = 0 orders can explain the opening of a gap
in the AN region in the fermionic spectrum or the existence of
a finite Q charge order at lower temperatures.

The PG phase thus behaves like a “Frankenstein” crea-
ture showing numerous different puzzling properties which
seems apparently disconnected to each other. A theory that
coherently connects all of these phenomenological features
is a need of the hour. In this endeavor, we postulate that the
PG state is an “entangled” state of preformed Cooper pairs
(�i j ≡ d̂

∑
σ σc j−σ ciσ ) and preformed bond-excitonic pairs

(particle-hole pairs) [53] (χi j ≡ d̂
∑

σ c†
iσ c jσ eiQ.(ri+r j )/2), both

of which live on nearest neighbor bonds 〈i j〉 (see Fig. 1) of the
square planar Cu lattice and d̂ gives a d-wave structure factor.
The formulation of this paper does not need any specific form
of the modulation wave vector Q. The preformed p-p pairs on
bonds will correspond to the d-wave superconducting (d-SC)
order and the preformed p-h pairs on bonds will correspond
to the modulating d-wave bond-excitonic (d-BDW) order.
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Since the d-BDW order parameter is complex, the real part
can lead to the d-wave charge density wave (d-CDW) and
the imaginary part can lead to the d-wave current density
wave (d-currentDW), as in previous studies [54]. The PG state
is described by a spinor or a doublet with two constituent
states—d-SC and d-BDW. From an alternative viewpoint,
these two constituent states emerge from the fractionalization
of a PDW field. The PDW field can be observed when it
recombines due to condensation in either d-SC or d-BDW at
low temperatures. Fluctuations in the PDW field can further
give rise to “auxiliary” Q = 0 orders. Thus on the one hand
our proposal has the prospects of generating finite Q orders
like d-CDW and PDW at relatively low temperatures, it can
also induce the auxiliary magnetoelectric loop current order
parameter at Q = 0 which can account for the breaking of
both time reversal symmetry and parity in the PG phase.

C. Theoretical perspective

1. Higgs mechanism and fractionalization of a PDW

In field theory, the “Higgs mechanism” is typically as-
sociated with the freezing of a phase resulting in a broken
gauge invariance. The vector potential corresponding to the
gradient of this phase hence gets expelled from the system; it
gets massive [55]. A prototype example of Higgs mechanism
in condensed matter physics is superconductivity [56], where
the phase of the superconducting order parameter is frozen.
Here the T ∗ line is ascribed to a specific Higgs mechanism
which freezes the global phase of the two kinds of preformed
pairs. The gauge field corresponding to the global U (1) phase
acquires a mass E∗ =

√
|χi j |2 + |�i j |2 which is identified

with the spectroscopic PG energy scale E∗. It is shown that
the freezing of the global phase entangles the two kinds
of preformed pairs at T ∗. Due to the composite nature of
the gauge field, the electromagnetic (EM) field does not get
expelled at T ∗: there is no Meissner effect.

A state with two preformed pairs corresponding to the
d-SC order and the d-BDW order can be described by a
U (1) × U (1) gauge theory. One U (1) corresponds to the usual
charge symmetry (usually broken by superconducting ground
state) and the other is related to the local phase θχ of the
d-BDW. Since the d-BDW is neutral to electromagnetism,
the gradient of θχ is a neutral gauge field αμ = ∂μθχ , mini-
mization of which generates the constraint χ2

i j + �2
i j = (E∗)2

(E∗ = 1 being a high energy scale). The theory described in
this paper is a unique proposal, which differs from the ex-
isting gauge theories [6,8] in one essential way. Our descrip-
tion does not involve any fractionalization of the electron’s
degrees of freedom, but rather, we fractionalize an “order
parameter” [57,58]. The neutral gauge field can be thought
as the fractionalization of a PDW into two elementary parts:
particle-particle and particle-hole on a bond �PDW = �i jχ

∗
i j ,

associated with the constraint χ2
i j + �2

i j = 1.

2. PG energy scale

Historically, it has been argued that the spectroscopic sig-
natures of the PG revealed two energy scales [4]. One corre-
sponds to a kink along with a depletion close to the Fermi level
in spectroscopic probes like angle resolved photoemission

spectroscopy (ARPES) [59–61], scanning tunneling spec-
troscopy [62,63], and Raman spectroscopy [64–66]. The
other, higher energy scale, is associated with the downturn in
the Knight shift measured from NMR experiments [1] and the
higher energy hump in ARPES or Raman spectroscopy. The
argument of two distinct PG energy scales, typical of strong
coupling approaches, interprets the higher scale as responsible
for spin singlet formation (a typical example is the RVB
state) and the lower scale arising due to the superconducting
fluctuations. Importantly in our paper, the PG is associated
with only one energy scale E∗ arising from the same con-
straint obtained both from the Higgs perspective and from the
parallel perspective of fractionalized PDW. E∗ is visible as a
coherence peak in STM or ARPES and a pair-breaking peak in
Raman spectroscopy at roughly the same energy. This single
energy scale acquires its definition for temperatures below
T ∗. In our view, the higher energy hump seen in ARPES or
Raman spectroscopy is not an independent energy scale and
is possibly related to the coupling of fermions to a collective
mode [67–71].

3. Entanglement of two kinds of preformed pairs

The U (1) × U (1) gauge theory can be reformulated for
fields on bonds (i, j), in terms of a global phase [72] and a
relative phase of the two preformed pairs without any loss
of generality. In the case of superconductivity, the ground
state is given as |SC〉 = �i j |0〉 where |0〉 is the vacuum
state. This ground state breaks the charge U (1) gauge in-
variance and the gauge field acquires a mass

√〈SC|SC〉 = �

where � is the uniform superconducting gap. In contrast, the
ground state corresponding to the PG phase is an entangled
state given as |PG〉 = (�i j + χi j ) |0〉, which is a quantum
superposition of d-SC and d-BDW orders (a “supersolid”
phase). At T ∗, 〈PG|PG〉 gets condensed to a nonzero value
with a broken gauge symmetry, henceforth the gauge field
acquires a mass E∗ = √〈PG|PG〉 =

√
|χi j |2 + |�i j |2, which

characterizes the PG energy scale. In order to minimize the
energy, the system chooses to condense in this entangled state
instead of condensing separately in either of the pairs (also
see Sec. III B 2). Our ansatz is equivalent to fractionalizing a
PDW in the PG phase. This special Higgs mechanism induces
a strong competition between the two preformed pairs. As
a result, the amplitudes of the d-SC and d-BDW orders
fluctuate wildly just below T ∗ with no uniform components.
Thus, neither of the three orders, d-SC or d-BDW, or PDW,
condense at this temperature, showing that the translational
symmetry or the charge symmetry is not broken at T ∗.

4. Phase diagram

With this prelude we describe the phase diagram of the
underdoped cuprates. A first Higgs mechanism at T ∗ freezes
the global phase of the two preformed pairs. The PG state
below T ∗ is thus a state with entangled p-p and p-h pairs with
no long-range order. The concept of two kinds of preformed
pairs makes the amplitude and the phase fluctuations of the
d-SC and d-BDW orders distinct. As a result, this opens up
possibilities of different temperature lines existing in the rich
phase diagram of underdoped cuprates, as depicted in Fig. 2.
Lower temperature crossover lines Tco and T ′

c correspond to
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FIG. 2. Schematic temperature (T )-hole doping (p) phase dia-
gram for a cuprate superconductor. The vertical dotted black line
demonstrates an adiabatic decrease in temperature from a represen-
tative high temperature (T > T ∗) point in the phase diagram. As ex-
plained in the text, the system hits the first Higgs mechanism freezing
the global phase of the p-p and p-h preformed pairs entangling them
at T ∗. This induces a constraint between the amplitudes of the two
order parameters. The fluctuations of the relative phase and the two
amplitudes can be described by an O(3) nonlinear σ model. Lower
temperature crossover lines Tco and T ′

c correspond to the mean-field
lines where the amplitudes of the two preformed pairs get condensed
giving a uniform component to each. A second Higgs mechanism
occurs at Tc, where the relative phase also gets quenched. We also
note that the theory described in this paper is strictly valid for dopings
p > 6%. Especially, we do not intend to explain the Néel temperature
(TN ) demarcating the antiferromagnetic phase. For lower dopings
(p < 6%), there are other effects like competing magnetic orders or
modifications in the effective action owing to the strong electronic
correlations [73]. We neglect these effects in the current picture.

the mean-field lines of the p-h and p-p pairs, respectively,
where the amplitudes of the d-BDW and d-SC orders con-
dense to give uniform components in the same spirit as that
of Bose condensation of preformed pairs (for details see
Sec. II D). At Tco, the short-range d-CDW can be observed
in x-ray, STM, or NMR measurements due to the pinning
of the phase of the d-BDW order. An NMR perspective on
pinning of the charge order in YBCO and its similarity with
pinning in layered metals is given in Ref. [34]. Since Tco and
T ′

c are mean-field lines, their relative position in the phase
diagram depends crucially on the details of the microscopic
models. Here we consider Tco > T ′

c . A possible justification
comes from the microscopic model [Eq. (42) chosen in this
study. A large off-site density-density interaction in this model
can lead to an enhanced Tco. The mean-field precursor gaps
of both the d-SC and d-BDW orders become well defined
below T ′

c . But the relative phase still fluctuates and thus there
is no phase coherence in d-SC or d-BDW orders. T ′

c marks
the onset of the pairing fluctuations as observed in Nernst
effect [18], transport studies [16], and Josephson SQUID
experiments [17]. The relative phase of the two orders gets
frozen at a lower temperature Tc, where the phase coherence
sets in for both the d-SC and d-BDW orders with a formation

of a supersolidlike phase. Some signatures of a supersolidlike
phase can be seen by the observation of the charge order in
x-ray [28,74], STM [75,76], and NMR [34] measurements
even in the superconducting state at zero magnetic field for
temperatures below Tc down to T = 0. The correlation length
of the charge order is not expected to increase for T < Tc

due to a strong competition with d-SC [77,78]. Instead, the
correlation length features a maximum at Tc [79] showing an
intimate connection between the d-SC and d-BDW orders. We
remark that if the pinning of the d-BDW order is too strong,
no superconductivity can emerge below Tc. Our formalism
thus implies that the pinning is present but weaker than the
Higgs mechanism giving rise to a bulk superconductor at
Tc. Lastly, as already noted, since the d-BDW is a complex
field, preemptive orders breaking discrete symmetries like
parity, time reversal, or lattice rotation, usually discussed in
the context of Q = 0 orders such as electronic nematicity or
loop current state, at higher temperature have to be present, in
the same line of thought as in previous studies [54,80,81].

The phase diagram can also viewed from the perspective of
fractionalization of the PDW field. As mentioned earlier, the
entanglement of p-p and p-h pairs at T ∗ is equivalent to frac-
tionalizing a PDW �PDW = �i jχ

∗
i j into elementary p-p and

p-h pairs. The PDW reconfines locally when either of the two
elementary constituents condenses. Similar confinement tran-
sition occurs in the theories of the electron’s fractionalization
where the electron reconfines when either of the elementary
constituents spinons and holons condense. At T = Tco, the
PDW field reconfines locally due to the condensation of the
d-BDW field amplitude. The system will show a short-range
PDW state. For T < Tco, the theory allows for two possible
PDW fields: �̃PDW = �i jχi j involving the global phase of
the p-p and p-h pairs and �PDW involving the relative phase.
While �̃PDW acquires global phase coherence at T ′

c , �PDW

obtains global phase coherence only at Tc.
A true long-range charge order, PDW or supersolid is

never established in the absence of magnetic field due to the
omnipresence of disorder in cuprates. Disorder acts on the
charge order as a “random field” [82]. Following Imry-Ma cri-
terion [83], any strength of random-field disorder disrupts the
long-range coherence in charge order in dimensions d � 4.
This is not the case for the superconducting order as disorder
does not directly couple to the superconducting order param-
eter as random fields. Thus for T < Tc, the superconducting
order shows a true long-range nature in d = 3 or a quasi-
long-range nature in d = 2. But, a three-dimensional (3D)
charge order acquires a true long-range nature only at high
magnetic fields when it shows uniaxial behavior (breaking a
nematic discrete symmetry [84]) or in the additional presence
of chain disorder [85]. As a consequence, the PDW order,
which is a bilinear combination of the charge order and the
superconducting order, can show long-range features only at
zero temperature or at high magnetic field.

5. Connection with theories on preformed Cooper pairs

In the past, the preformed Cooper pairs [86] were ex-
plored in detail in scenarios where the phase of the Cooper
pairs [11,87–89] fluctuates. A distinction has to be made
between fluctuating scenarios [90,91], where the focus is
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on the strength of the fluctuations, and preformed pair sce-
narios [13,92–94], where the emphasis is put on strong
short-range Cooper pairs which lead to models analogous
to the Bose-Einstein condensation (BEC) phenomenon. For
cuprates, it is indeed natural to assume that the size of the
preformed pair, if they exist, is very short, of a few lattice
sizes, giving credit to models which treat them as hard core
bosons. In this preformed pairs scenario, the PG can be
related to a precursor gap of fluctuating preformed Cooper
pairs (p-p pairs), which acquire a phase coherence only below
Tc [13,86]. This approach goes well with the experimental
observation that the “coherence peak” position in ARPES
does not change when the temperature is reduced across Tc.
However, the presence of superconducting fluctuations up to
T ∗ was largely debated. Experimental observations of Nernst
effect, transport studies, and Josephson SQUID measurements
identified the region of superconducting fluctuations only up
to a small temperature above Tc. This issue can be resolved
by invoking a partner competitor like p-h pairs, which reduces
the temperature window of superconducting fluctuations near
Tc [95]. Furthermore, recent observation of preformed p-p
pairs up to T ∗ in pump probe experiments [96–98] revived
the idea of fluctuating preformed pairs.

In our work we extend to two kinds of competing p-p
and p-h preformed pairs keeping various phenomenological
advantages of the preformed p-p scenario. For example: (a)
In both approaches, the presence of p-p pairs will result into
the Fermi arcs as observed in ARPES. Superconductivity is a
whole Fermi surface instability. At temperatures higher than
Tc, the nodal quasiparticles will be more prone to fluctuations
leaving the antinodal gap unperturbed [14]. As a result, the
Fermi surface will be gapped in the antinodal region. (b) In
analogy with the preformed p-p scenario, in our approach,
both Tc and Tco is expected to show a dome shaped doping
dependence, whereas T ∗ decrease monotonically with doping.
This is because of an additional source of fluctuations at
low doping due to closeness to the Mott transition, so that
phase fluctuations are too strong to stabilize d-SC and the
coherent puddles of charge modulations. (c) Owing to the
notion of preformed pairs, the PG T ∗ line will show univer-
sal [99] features independent of disorder or magnetic field
in contrast to both d-CDW and d-SC ground states which
are affected by nonmagnetic impurities like Zn [100,101]
and pressure [102–104]. This is very similar to the idea of
persistent gap (because of preformed p-p pairs) in s-wave
superconductors in the presence of strong disorder [105] or
magnetic field [106].

6. Connection with emergent SU(2) theories

In order to describe the PG phase of the underdoped
cuprates, there were earlier proposals based on emergent
symmetries between the d-SC order and a nonsuperconduct-
ing “partner.” Some of these include an SO(5) symmetry
with antiferromagnetism [107] and an SU(2) symmetry with
d-density wave [108] or π -flux state [109]. More recently,
theories with emergent SU(2) symmetry [110–114] are ex-
plored where the nonsuperconducting partner corresponds
to charge order. The SU(2) symmetry admits only a few
exact realizations in condensed matter physics. In the case

of the attractive Hubbard model at half-filling, the symmetry
is exactly realized in the ground state with a commensurate
modulation wave vector (π, π ) [115]. The eight hot spots
model provides as well an exact realization of the SU(2)
symmetry between the d-SC order and the d-BDW order, with
an incommensurate d-BDW modulation wave vector relating
two adjacent hot spots on the diagonal [111]. Although the
SU(2) emergent symmetry provides a strong phenomenology
for underdoped cuprates, a major drawback is that its ex-
act realization in ground states is fragile [116] with respect
to the variation of tunable parameters like doping or the
curvature of the Fermi surface at the hot spots [117]. The
present formulation solves this issue by providing a robust
mechanism for the opening of a gap. The Higgs mechanism
at T ∗ leads to a constraint between the amplitudes of the two
order parameters (|χi j |2 + |�i j |2 = E∗2) where the relative
phase as well as the two amplitudes fluctuate. In contrast, a
similar constraint is an outcome of the SU(2) symmetry in
the emergent symmetry theories. In the eight hot spots model,
for example, the symmetry is imposed at the hot spots via
an exact superposition of the two order parameters satisfying
the constraint. In the present model though, the constraint is
imposed at each bond, such that the two order parameters fight
for phase space in momentum space, but also gain freedom to
gap out a larger part of the Fermi surface. In spite of having
very similar phenomenologies (like the constraint between the
two order parameters), the two models differ in that we get the
T ∗ line as a true phase transition, associated with the breaking
of a U (1) gauge symmetry.

In both approaches though, the fluctuations below T ∗
are described by a nonlinear σ model (NLσM): the O(4)
NLσM for the eight hot spots model and the O(3) NLσM or
equivalently the SU(2) chiral model with the fluctuation space
reduced to an S2 sphere. These fluctuations can be further
recast into the CP1 model and remain protected by the Higgs
mechanism in a wide range of doping. If we try to accom-
modate multiple partners in the theory, the fluctuations can
be recast into a CPn model or an SU(n + 1) chiral model with
n + 1 complex fields satisfying the constraint. The CPn model
and the SU(n + 1) chiral model are topologically equivalent
for any general n [118] (also see Appendix D 1). However,
the equivalence of a CPn model with an O(n + 2) NLσM is
only valid for n = 1. For example, O(n + 2) NLσM does not
have topological properties for n � 2, whereas the CPn model
is topologically nontrivial for all n. Thus, an extension of our
formalism to the SO(5) model is not possible.

Though T ∗ corresponds to a true phase transition in our
theory, the presence of two-dimensional fluctuations and
topological fluctuations coming from the O(3) NLσM will
obscure the observation of singularities in thermodynamic
probes.

D. Organization of the paper

We organize the paper in the following way. In the first part
of the paper (Sec. II), we formulate the Higgs mechanism for
a generic spinor comprising of two complex order parameters
with a U (1) × U (1) gauge structure (also see Table I in
Appendix A). The Higgs mechanism freezes the global U (1)
phase of the spinor below a temperature T ∗. This freezing
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of the global phase can be interpreted as the Hopf fibration
of an S3 sphere to an S2 sphere (Sec. II B). As a result of
this reduction to the S2 sphere, we accommodate topological
structures like skyrmions of pseudospin operators. With a
special choice of the spinor where the individual components
correspond to the d-SC and d-BDW order parameters, we
show how the Higgs mechanism influences the response of
these individual orders to an external EM field (Sec. II C). This
Higgs phenomenon leaves the conventional London equations
describing Meissner effect invariant. We further demonstrate
that the structure of the fluctuations below T ∗ can be explained
using an O(3) NLσM (Sec. II D).

In the second part of the paper (Sec. III), we illustrate the
U (1) × U (1) gauge theory in the context of cuprate super-
conductors and relate T ∗ with the pseudogap temperature. In
this case, the spinor comprises of a d-SC order parameter
and a d-BDW order parameter with an entanglement of the
global phase of the two at T ∗ (Sec. III A 1). We show that
the phase entanglement can be interpreted as fractionalizing a
PDW order parameter with a neutral gauge field (Sec. III A 2).
Beside giving a simple account for the understanding of
cuprate phase diagram in the underdoped region, the theo-
retical framework discussed in this paper can explain many
unique signatures seen in existing experiments on different
cuprates. In Secs. III B, III C, and III D we focus on the
following experimental features:

(1) Precursor gaps of preformed pairs (observed as pair-
breaking peaks in Raman spectroscopy): Recent electronic
Raman spectroscopy [37] identified a precursor gap in the
p-h charge channel, characterized as a peak in the B2g re-
sponse of a prototype cuprate. In the context of this paper,
these measurements highlight two key features: (a) The near
degeneracy of the associated energy scales of p-h and p-p pair
breaking peaks, and (b) the same doping dependence of both
these peaks as that of T ∗. In Sec. III B, using a simplified
microscopic model, we estimate the mean-field values of the
precursor gaps. We also give a mean-field estimate of the
PG energy scale and show that there is only one energy
scale characterizing the PG phase. Calculating the momentum
dependence, we obtain a gap repartition in the Brillouin zone
by two kinds of preformed pairs. The doping dependence of
these gaps in different parts of the Brillouin zone have a close
resemblance to what is observed in Raman spectroscopy.

(2) d-CDW spatial phase coherence (observed in STM):
Another distinctive feature of our formalism is that both
the relative phase and the global phase of the d-SC order
parameter and the d-BDW order parameter is fixed below Tc.
Thus χi j and �i j both acquire a spatial phase coherence. In the
presence of a magnetic field, the d-SC amplitude is suppressed
near a vortex core. As a result, owing to the constraint between
the two order parameters, the d-BDW order becomes more
recognizable near a vortex core than it is away from the core.
This was illustrated by the observation of the enhanced d-
CDW (real part of the d-BDW order) near the vortex cores in
STM [19–22]. Remarkably, the d-CDW puddles formed near
vortex cores exhibit a strong spatial phase coherence [119],
substantiating the theory proposed in this paper (also see
Sec. III C).

(3) Multiple orders in the PG phase (PDW and loop
currents): The Higgs mechanism at T ∗ results in the freezing

of the global phase of the spinor. This leads to an emergence
of a long-range phase coherent PDW order below T ′

c . Fluctu-
ations in the PDW order for T > T ′

c give the possibility of an
auxiliary “loop current” [50] order in the PG phase, breaking
discrete symmetries like time reversal symmetry and parity
(see Sec. III D).

Finally, in Sec. IV we conclude by summarizing our main
outcomes and placing our results in the context of the existing
literature in cuprates.

II. THE U (1) × U (1) GAUGE THEORY

Now we come to the theoretical formulation of our paper,
i.e., to describe the Higgs mechanism for a spinor (or doublet).
We start with an action acting on a doublet field, which
shows U (1) × U (1) gauge invariance, and we freeze the cor-
responding overall U (1) phase through a Higgs phenomenon.
The mass of the corresponding Higgs boson can be a good
candidate for the estimation of the pseudogap energy scale of
underdoped cuprates.

A. The model, gauge invariance, and the entanglement scale

We consider two complex fields z1 and z2 forming a spinor

ψ =
(

z1

z2

)
, ψ† = (z∗

1, z∗
2 ). (1)

The corresponding action reads as

Sa,b =
∫

dd x

[
1

2g
|Dμψ |2 + V (ψ ) + 1

4
FμνFμν + 1

4
F̃μν F̃μν

]
,

(2)

with

Dμ = ∂μ − iaμ − iτ3bμ,

Fμν = ∂μaν − ∂νaμ,

and

F̃μν = ∂μbν − ∂νbμ,

wherein τ3 is Pauli matrix in the 2 × 2 spinorial space, and
aμ and bμ are gauge fields corresponding, respectively, to the
spinor’s global phase θ and relative phase ϕ. The FμνFμν

(or F̃μν F̃μν) terms are there to get the most generic form of
the action, but they can be put to zero if one gauge field is
neutral. While we carry out calculations in this section without
specifying the form of z1 and z2 for generality, the physical
meaning of the gauge fields for the case of cuprates is made
apparent in Sec. III where we take a specific choice for z1 and
z2 [Eq. (23). The form of |Dμψ |2 in Eq. (2) is explicitly SU(2)
symmetric and a motivation for this choice will be given in
Sec. III A 3 [Eq. (39). The potential V (ψ ) is chosen in such a
way that the action in Eq. (2) is invariant under the two U (1)
gauge transformations:

ψ → eiθψ, aμ → aμ + ∂μθ,

ψ → eiτ3ϕψ, bμ → bμ + ∂μϕ, (3)

without necessarily imposing the SU(2) symmetry. Though
the action in Eq. (2) resembles that of a Weinberg-Salam
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FIG. 3. Diagrams describing the Higgs phenomenon for the
gauge fields āμ and the integration of the Goldstone mode θ . The
integration over the field θ has made the gauge field āμ massive and
transverse to the direction of propagation with ā⊥ = ā − q(q · ā)/q2.
For example, see Ref. [120].

model of electroweak interaction, there is an important differ-
ence. The Weinberg-Salam model possesses a U (1) × SU(2)
gauge structure. On the contrary, the presence of V (ψ ) term
in Eq. (2) can explicitly break the SU(2) symmetry and the
resultant gauge structure is U (1) × U (1). The U (1) × U (1)
gauge theory is constructed such that one U (1) is related to the
global phase θ of the spinor and the other U (1) is connected
to the relative phase ϕ of the spinor. The phase θ is the
same for both components of the spinor ψ . The U (1) θ -gauge
invariance of the action in Eq. (2) can be associated with
a Higgs mechanism which freezes the common U (1) phase
θ . First, solving for the minimization equations δSa,b/δaμ =
0 and δSa,b/δbμ = 0, we get respectively aμ = ∂μθ and
bμ = ∂μϕ.

We explore below the possibility that the global phase of
the spinor θ freezes at a typical energy scale, whereas the
relative phase ϕ remains untouched. A good guess for such
a scenario is that the freezing of the phase θ corresponds to
opening of a mass E∗ in the spinor field ψ , with√

|z1|2 + |z2|2 := |ψ0| := E∗. (4)

This mass can be obtained from Eq. (2) with a specific choice
of V (ψ ) depending only on the modulus ψ†ψ . Evaluation
of this energy scale from a microscopic model is done in
Sec. III B. Integrating out the phase θ in Eq. (2) (details are
given in Appendix B) and differentiating with respect to aq
leads to ( |ψ0|

2g

2

+ q2

)
a⊥ = −

(
ψ†τ3ψ

2g
+ q2

)
b⊥, (5)

with a⊥ = a − q(q · a)/q2 (idem for b⊥). The transverse
gauge field a⊥ never becomes fully massive since on average
〈ψ†τ3ψ〉 = 0. This feature removes all possibility of a Meiss-
ner effect at T ∗. We can say that the composite field āμ =
aμ + (ψ†τ3ψ )/|ψ0|2bμ becomes massive, with a contribution
to the action

�Sa = 1

2
m2

aaμaμ, ma = 1√
g

E∗. (6)

This “Higgs mechanism” is pictured diagrammatically in
Fig. 3, where it can be seen that after integration of the
Goldstone boson θ , the condensate contribution to the polar-
ization amplitude gives a mass ma [Eq. (6) to the transverse

propagator D−1
āμ

= 〈T aμaν〉−1 = im2
a(gμν − kμkν

k2 ). gμν is the
metric and kμ is the four-momentum.

B. Analogy with the chiral model, Hopf fibration

The Higgs phenomenon exposed above has roots into the
Hopf fibration of the sphere S3 which can be factorized into
S2 by taking out a U (1) phase, S3 ∼ U (1) × S2. In Eq. (4),
two complex order parameters are linked through a constraint,
which makes an S3 sphere. By factorizing a global phase as in
Eq. (3), the sphere S3 reduces to S2. The structure of the gauge
field in Eq. (2) can be much more apparent in an analogous
CP1 representation of a chiral SU(2) model. A chiral SU(2)
model is described by an action,

S = 1

2

∫
dd x Tr[∂μϕ†∂μϕ], with ϕab = δab

2 − zaz∗
b, (7)

and
2∑

a=1

|za|2 = 1,

where ϕ is a matrix field belonging to the Lie algebra of the
group SU(2) and is parametrized using two complex numbers
z1 and z2 with a constraint |z1|2 + |z2|2 = 1. If the field ϕ is
a charge-2 boson, the action in Eq. (7) can be modified with
∂μ → ∂μ − 2iAμ, where Aμ is the EM vector potential. The
action in Eq. (7) can be recast into a form [118] (more details
given in Appendix D 1)

Sa =
∫

dd x|Dμz|2, with
2∑

α=1

|zα|2 = 1, (8)

Dμ = ∂μ − iaμ, aμ = −i
2∑

a=1

za
∗∂μza, (9)

where z is a shorthand notation for the doublet z = (z1, z2).
The action is called a CP1 model. This CP1 model has
same structure as the action in Eq. (2) but with aμ =
−i
∑2

a=1 za
∗∂μza. The action in Eq. (8) is invariant under a

global U (1) change of phase in z reflecting analogous gauge
symmetry as in Eq. (3). Similar gauge symmetry is frequently
used in the study of spin systems through, for example, a
CP1 representation of the SU(2) spinor [121]. The CP1 model
is equivalent to the O(3) NLσM as defined later in the text
in Eq. (19). Hence in this case the gauge symmetry of the
CP1 model is also associated with the Hopf fibration of
S3 → S2, which effectively transforms an O(4) NLσM into
an O(3) NLσM.

At T ∗, through a freezing of the U (1) phase θ , the con-
straint in Eq. (4) is generated. E∗ in Eq. (4), which defines
the scale of the constraint in Eq. (8), can be identified as
the energy scale of the PG, whereas z1 and z2 are, respec-
tively, d-SC and d-BDW fields. Here we have considered the
spinor consisting of two components z1 and z2 where d-BDW
field z2 has only one modulation wave vector Q. However,
the formulation of this paper is quite generic and can be
extended to incorporate n + 1 complex fields for a generic
n, as shown in Appendix D 1. For example, if the d-BDW
has two modulation wave vectors (Qx, 0) and (0, Qy), we can
have a triplet instead of a doublet. The Higgs mechanism at
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T ∗ will then induce a constraint between three complex order
parameters. The corresponding action can be recast into a CP2

representation of a chiral SU(3) model (see Appendix D 2 b
for details).

C. London-type equations for the superconducting transition

In this section, starting from Eq. (2), we look at what
happens at lower temperatures when the second Higgs mecha-
nism, corresponding to the freezing of the field ϕ occurs. The
covariant derivative writes, with the gauge fields aμ and bμ

defined above, as

|Dμψ |2 = |∂μψ0|2 + ψ†(∂μθ + τ3∂μϕ − aμ − τ3bμ)2ψ.

(10)

We formally integrate out the Goldstone modes θ and ϕ one
after another (see Appendix B 3). As a result, we get an
effective action

Seff
a,b =

∑
q

[
n+

s

2g
(a⊥

q · a⊥
−q + b⊥

q · b⊥
−q)

+ n−
s

2g
(a⊥

q · b⊥
−q + a⊥

−q · b⊥
q )

+ q2

2
a⊥

q · a⊥
−q + q2

2
b⊥

q · b⊥
−q

]
+ V (ψ0), (11)

with
n+

s = ψ†ψ = |z1|2 + |z2|2, (12)
and

n−
s = ψ†τ3ψ = |z1|2 − |z2|2, (13)

where a shorthand notation has been taken for a⊥ = a −
q(q · a)/q2, which is the transverse component of the gauge
field (idem for b⊥). The q2 terms in Eq. (11) come from the
gauge field strength FμνFμν and F̃μν F̃μν in Eq. (2).

With the help of Eqs. (11) and (5), we can describe the
generic phase diagram of underdoped cuprates. Let us take
a point at a high temperature as pictured in Fig. 2 and
adiabatically decrease the temperature. At T ∗, the system hits
the first Higgs transition, which freezes the phase θ and the
gauge field a⊥ becomes massive, with a mass proportional
to
√

n+
s = E∗ [see Eq. (6). The relative phase ϕ as well as

the amplitudes of the fields |z1| and |z2| are still fluctuating
at T ∗, in such a way that the line is deprived of the typical
thermodynamic sharpness which usually accompanies the
formation of a Higgs phase. The amplitude of the doublet
field ψ condenses at this temperature with no condensation
(no long-range component) in individual field amplitudes |z1|
and |z2|. So at T ∗, n−

s = 0 from Eq. (13). The amplitudes of
the individual components z1 and z2 get condensed, or attain
mean-field values, at lower temperatures Tco (for |z2|) and T ′

c
(for |z1|). At a lower temperature Tc (see Fig. 2), a second
Higgs mechanism takes place, where the remaining phase
ϕ freezes. As a result, both z1 and z2 acquire global phase
coherence and the system gets into a supersolidlike phase. At
this transition, both vector potentials a⊥ and b⊥ get associated

with a phase stiffness. Differentiating Eq. (11) with respect to
a⊥ and b⊥, we get(

2|z1|2
g

+ q2

)
(a⊥

q + b⊥
q ) = 0, (14)

(
2|z2|2

g
+ q2

)
(a⊥

q − b⊥
q ) = 0, (15)

or equivalently(
2|z1|2|z2|2

gn+
s

+ q2

)
a⊥

q = 0, (16)

(
2|z1|2|z2|2

gn+
s

+ q2

)
b⊥

q = 0,

which defines the second London equation.
In the case for cuprate superconductors, the spinor is

identified as

ψ =
(

z1

z2

)
= eiθ eiτ3ϕψ0, with ψ0 =

(
z̃1

z̃2

)
, (17)

where z̃1 = d̂|z1| and z̃2 = d̂|z2|eiQ.r with d̂ being the d-wave
form factor (d̂ = ±1 depending on the direction of the bond)
and Q is the modulation wave vector of the d-BDW field z2.
It should be emphasized that the amplitude |z2| depends on
the choice of the modulation wave vector Q and should be
written as |zQ

2 |. For simplicity of notations, we have not used
the superscript Q in |z2|. We consider d-wave form factor
in both z̃1 and z̃2 and consider modulations only in z̃2. Note
that the constraint is still given by Eq. (4). The two linear
combinations of aμ and bμ are identified as aμ + bμ = αμ +
2Aμ and aμ − bμ = αμ where Aμ is the EM vector potential
and αμ corresponds to a neutral gauge field (see also Sec. III A
for details). Hence, from Eq. (14) we can see that the transition
at Tc is an usual superconducting transition, giving mass to the
EM field Aμ, which will account for the Meissner effect and
quantization of the currents, with the usual superfluid stiffness
ρs = 2|z1|2/g. Equation (16) shows that the freezing of both
phases θ and ϕ imply that both |z1| and |z2| condense (which
automatically leads to a long-range n+

s , but the reciprocal is
not true), which is verified for T < Tc. In the range Tc < T <

T ′
c , both n+

s �= 0 and n−
s �= 0, i.e., |z1| and |z2|, attain uniform

components. But we should note that since the relative phase
fluctuates, the current-current correlation (which gives the
superfluid density [122,123]) will still be zero due to the lack
of phase coherence [124] in z1 and z2. This is not captured in
the formulation of this paper as we do not intend to connect
the current-current correlation to the stiffness of the gauge
field. So, even if both n+

s �= 0 and n−
s �= 0, there would be no

Meissner effect for Tc < T < T ′
c .

D. Fluctuations below T ∗ in the PG phase

We already indicated in the last section that the freezing
of the global phase θ of the spinor leaves fluctuations in the
relative phase ϕ and also the amplitudes |z1| and |z2|. Now
we ask the following question: What is the form of these
fluctuations below T ∗?

In this formulation, the phase below T ∗ is characterized
by n+

s = ψ
†
0 ψ0 �= 0. If we set the gauge field bμ = 0 and
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expand the derivative in Eq. (10) to the second order
we get the corresponding contribution to the action Sa =
1/(2g)

∫
dd xn+

s [(∂μθ )2 + (∂μϕ)2 + a2
μ − 2∂μθaμ] + |∂μψ0|2

+ n−
s (2∂μθ∂μϕ − 2aμ∂μϕ). After freezing the phase θ and

differentiating with respect to aq, we obtain for T < T ∗
(details given in Appendix B 2),

Seff
T ∗ = 1

2g

∫
dd x

[
4|z1|2|z2|2

n+
s

(∂μϕ)2 + (∂μ|z1|)2

+ (∂μ|z2|)2 + V (ψ0)

]
. (18)

Noticing (see Appendix D 2) that aμ from Eq. (9) has now
the form aμ = −i(ψ†τ3∂μψ )/|ψ0|2, we obtain that Eq. (18) is
the form that the SU(2) chiral model takes when the mapping
to the CP1 model is taken into account; it thus describes the
fluctuations below T ∗. As pointed out above, an equivalent
form of the fluctuations is given with the O(3) NLσM,
using the variables ma = (E∗)−1z∗

ασ a
αβzβ as introduced in

Appendix D 1, which satisfies the constraint
∑

a |ma|2 = 1.
The corresponding action is now of the O(3) NLσM:

S = 1/2
∫

dd x
3∑

a=1

(∂μma)2 + V (ma),

with

3∑
a=1

|ma|2 = 1. (19)

It is not a surprise that this is similar to the CP1 representation
in Eq. (8). The Higgs mechanism at T ∗ has given a mass to the
sum of the squares of the fields z1 and z2 (|z1|2 + |z2|2), and
expanding below T ∗, one thus recovers the typical structure
of the chiral SU(2) model in Eq. (8). The potential terms in
Eqs. (18) and (19) give a massive contribution to the NLσM
such that there is no exact SU(2) symmetry at all dopings.
Due to the mass contribution, z1 and z2 fields order at low
temperatures with power-law correlations in d = 2 [111].

With the choice of the spinor ψ = (z1, z2)T , the fluctuating
fields are mz ≡ z1z∗

1 − z2z∗
2, m+ ≡ z1z∗

2, and m− ≡ z2z∗
1. For

cuprate superconductors, the fluctuating fields m+ and m−
take the form of PDW η operators and mz takes the form of
fluctuating densities on sites (details of this identification is
given in Appendix E 1 a). These PDW operators involve the
fluctuations in the amplitudes (|z1| and |z2|) and the relative
phase ϕ. They construct the SU(2) Lie algebra corresponding
to the O(3)NLσM. The structure of the PDW fluctuations
in the case of SU(2) chiral model and a contrast with the
SU(2) emergent symmetry models is discussed in details in
Appendix E. Note that the O(3) NLσM admits chiral struc-
tures also called skyrmions, in the fluctuation space (η space).
These local structures might account for the recent observa-
tion of huge thermal Hall constant in these materials [125], in
addition to the already existing proposals based on proximity
to a quantum critical point of a “semion” topological ordered
state [126], presence of spin-dependent next nearest neighbor
hopping in the π -flux phase [127], or presence of large loops
of currents [128].

The freezing of the global phase at T ∗ results into the
constraint in the NLσM and thus opens up a regime of strong
fluctuations in the amplitudes of both z1 and z2. Just below T ∗,
the amplitudes of z1 and z2 do not acquire uniform compo-
nents. To illustrate this we can parametrize the amplitudes as

|z1| = E∗|sin �| and |z2| = E∗|cos �|, (20)

where � is not a phase and just a parameter that quantifies the
relative amplitude such that the constraint |z1|2 + |z2|2 = E∗2

is satisfied. Remember that the constraint is written in real
space and applicable for all bonds. If we do a spatial average
of the square of the amplitudes, we get

〈|z1|2〉 = E∗2〈sin2 �〉 = E∗2

2

and

〈|z2|2〉 = E∗2〈cos2 �〉 = E∗2

2
, (21)

where 〈· · · 〉 denotes the average over all sites. So the
amplitudes |z1| and |z2| fluctuate with a mean average to
satisfy the constraint. But the amplitudes |z1| and |z2| do
not have uniform components or condensed values just
below T ∗. The amplitudes of the individual fields |z1| and
|z2| attain uniform mean-field components at temperatures
Tc and T ′

c , respectively. This can be thought of as a BEC
of the amplitudes |z1| and |z2|. Below these temperatures,
the amplitudes of these fields still fluctuate but now with a
uniform component such that

|z1| = |z1|0 + δ|z1| and |z2| = |z2|0 + δ|z2|, (22)

where |z1|0 and |z2|0 are the uniform components and δ|z1| and
δ|z2| are the fluctuating parts. |z1|0 and |z2|0 also correspond
to the mean-field precursor gaps in momentum space as
calculated in Sec. III B. As one lowers the temperature, the
condensed parts of the amplitudes increase and gradually eat
up the fluctuating parts, still satisfying the constraint. At Tc,
the fluctuations in the relative phase also freeze owing to a
second Higgs mechanism.

III. FRACTIONALIZED PDW AND CUPRATE
SUPERCONDUCTORS

In Sec. II we have introduced the formalism of the Higgs
mechanism for a spinor with U (1) × U (1) gauge structure
and demonstrated its consequences. Though we took a cuprate
superconductor as an example to illustrate various effects, our
discussion in Sec. II is much more generic and is applicable
to any spinor. In this section we explicitly use the case for
underdoped cuprates and connect the outcomes of this Higgs
phenomenon to experimental signatures like different energy
gaps in Raman spectroscopy (Sec. III B), the charge mod-
ulation phase coherence in scanning tunneling microscopy
(Sec. III C), and the emergence of multiple orders in the PG
phase (Sec. III D).

The special Higgs mechanism at T ∗, which freezes the
global phase of the spinor, but does not quench the full
entropy, has strong experimental consequences. In this section
we will focus on a few prominent experimental consequences
emerging from the theory, keeping in mind that we cannot
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yet give credit for all the fascinating observations performed
over the years, but with the hope that the experiments chosen
are distinguishing enough to make our case. In order to
describe the phenomenology of underdoped cuprates, in this
section we first give the form of the fields constituting the
spinor defined in Sec. II, then describe the U (1) × U (1) gauge
structure and give the details of the alternative picture of the
fractionalization of a PDW.

A. Gauge theory formalism

1. U(1) × U(1) gauge structure

In the case of underdoped cuprates, the field operators z1

and z2 are identified to be the particle-particle (or Cooper)
pairing order and (Q-modulated) particle-hole (or bond-
excitonic) pairing order, with

z1 → d̂
∑

σ

σc j−σ ciσ ≡ �̂i j,

z2 → d̂
∑

σ

c†
iσ c jσ eiQ·(ri+r j )/2 ≡ χ̂i j, (23)

where both z1 and z2 are defined on nearest neighbor bonds
〈i j〉 (see Fig. 1) of a square lattice where r j = ri + δ with δ =
±ûx or ± ûy and û is the lattice translational operator; and d̂
is an operator describing the d-wave structure factor. We note
immediately that, although the field �i j directly couples to
the EM field Aμ through the gauge field a�

μ = αμ + 2Aμ, to
the first approximation, χi j is neutral to the EM field since the
corresponding gauge field aχ

μ couples only to the gradient of
the EM field aχ

μ = αμ + û.∂û(Aμ), which can be approximated
as aχ

μ ∼ αμ. Hence the gauge field αμ is neutral to the EM field
and is related to the phase θχ of the complex field χi j as αμ =
∂μθχ . αμ corresponds to the local variation of the effective
modulation wave vector of the charge modulations. Note that
incommensurate charge modulations are typically associated
with a local phase which is responsible for the coupling to the
lattice [129]. The stiffness of the neutral gauge field αμ leads
to the constraint in Eq. (4), which also defines the energy scale
of the PG phase.

The two complex field operators �̂i j and χ̂i j thus transform
under local gauge transformations as

�̂i j →eiθ��̂i j,

χ̂i j →eiθχ χ̂i j . (24)

The global phase of the spinor in Eq. (3) is then given by
(θ� + θχ )/2 and the relative phase is given by (θ� − θχ )/2.
The corresponding gauge fields in Eq. (3) for the global and
the relative fields, respectively, are given by

aμ = Aμ + αμ,

bμ = Aμ. (25)

It is not the first time that a neutral field with a phase
is related to a neutral gauge field through a constraint. This
was used in the past as an ansatz for fractionalizing the
electron [6–8,130] within, for example, a U (1) gauge theory

ci = f †
i bi,

f †
i fi + b†

i bi = 1, (26)

where bi represents a charged “holon” and fi represents a
neutral “spinon.” The corresponding local gauge invariance
writes

fi → eiθ fi, bi → eiθ bi. (27)

which corresponds to the fluctuations of the global phase of
the spinor ψ = ( fi, bi )

T .

2. Fractionalization of a PDW: Operator construction

Here the emergent neutral gauge field also corresponds to
a fractionalization, not of an electron as in Eq. (26), but
of an order parameter field: a preformed PDW pair which
fractionalizes into preformed p-p pairs (�i j) and p-h pairs
(χi j). Being a particle-particle field with finite modulation
wave vector, the PDW operator is given by

η̂ = [�̂i j, χ̂
†
i j], η̂† = [χ̂i j, �̂

†
i j], (28)

to which we add a constraint in analogy with Eq. (26)

�̂
†

i j�̂i j + χ̂
†
i j χ̂i j = 1. (29)

The corresponding gauge structure is analogous to Eq. (27)
with the operators η̂, η̂† being invariant within

�̂i j → eiθ �̂i j, χ̂i j → eiθ χ̂i j . (30)

In order to construct a field theory, we make the corre-
spondence η̂ → �PDW, �̂i j → �i j , χ̂i j → χi j (η̂† → �∗

PDW,
�̂

†
i j → �∗

i j , χ̂
†
i j → χ∗

i j). The typical field theory associated
with the decomposition Eq. (28) with the constraint Eq. (29)
is the rotor model [see, for example, Eqs. (E28) and (E29) in
the context of emergent SU(2) symmetry]:

S =
∫

dd x
1

2

2∑
a,b=1

|ωab|2, (31)

where

ωab = z∗
a∂μzb − zb∂μz∗

a, (32)

with here z1 = �i j , z2 = χi j (z∗
1 = �∗

i j , z∗
2 = χ∗

i j). Expanding
Eq. (31) and using the constraint Eq. (29) we get

S =
∫

dd x

⎛
⎝∑

a

|∂μza|2 −
∑
a,b

(z∗
a∂μza)(zb∂μz∗

b )

⎞
⎠, (33)

which in this form is equivalent to the chiral model Eq. (7),
see also Eq. (D4) in Appendix D. Introducing the real gauge
field

αμ = i

2

∑
a

(z∗
a∂μza − za∂μz∗

a ), (34)

the action in Eq. (33) can be recast into the CP1 model Eq. (8):

S =
∫

dd x|Dμψ |2, (35)

with

Dμ = ∂μ − iαμ.

The gauge invariance imposed by the transformation in
Eq. (30) corresponds to αμ → αμ − ∂μθ .
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3. Fractionalization of a PDW: A simplified construction

Since a PDW is a particle-particle field with a finite modu-
lation wave vector, the corresponding order parameter can be
described in the field theoretic picture by

�PDW = �i jχ
∗
i j, (36)

with the constraint in Eq. (29) reading as

�∗
i j�i j + χ∗

i jχi j = 1, (37)

In the absence of EM field, the action governing the
gradient terms of the �PDW field is typically given by

S =
∫

dd x ∂μ�∗
PDW∂μ�PDW, (38)

which is a special case of the chiral model Eq. (7) for which
ϕ11 = ϕ22 = 0 and ϕ12 = ϕ∗

21 = �PDW. After inserting the
form of �PDW Eq. (36) into Eq. (38), and using the constraint
Eq. (37), the action can be rewritten as (details are given in
Appendix C)

S =
∫

dd x [|(∂μ + iαμ)�i j |2 + |(∂μ − iαμ)χi j |2], (39)

where
αμ = −i(�i j∂μ�∗

i j − χ∗
i j∂μχi j ). (40)

Thus αμ appears as an emergent gauge field owing to the frac-
tionalization of the �PDW and the constraint in Eq. (37). The
action in Eq. (39) is equivalent to the CP1 model Eq. (8) with
a particular choice of the spinor (for details see Appendix C).
The gauge field αμ = ∂μθ corresponds to the global phase of
the spinor ψ = (�i j, χi j )T . In the presence of EM field, αμ is
shifted by Aμ and the gauge field for the global phase is given
by αμ + Aμ. Note that we obtain an SU(2) symmetric form for
the gradients terms in Eq. (39) and thus motivates the choice
of the form of |Dμψ |2 in our starting action Eq. (2).

a. An alternative route to the effective action

The fractionalization is a first route to obtain the effective
action of the problem with a given constraint. But in order
to generate the constraint, it is equivalent to minimize with
respect to the corresponding gauge field. In Sec. II we took
precisely this other route of considering an action [Eq. (2) with
two varying gauge fields aμ (for the global phase) and bμ (for
the relative phase). Minimizing the action with respect to the
gauge field aμ leads to the constraint |χi j |2 + |�i j |2 = E∗2.
As a result, αμ + Aμ = 0 at T ∗. Only at Tc, the EM gauge
field Aμ gets stiff when the relative phase is also frozen.

b. Connection to other fractionalization theories

As mentioned earlier, a neutral gauge field corresponding
to the fractionalization of an entity is not new in the field of
cuprates. For example, a fictitious gauge field is often intro-
duced in theories with strong electronic correlations where
the electrons fractionalize into spinons and holons [6–8,130].
Minimizing the action with respect to this fictitious gauge
field generates the constraint of no double occupancy on each
lattice site (see, e.g., Ref. [8]). Finite double occupancy leads
to fluctuations in the gauge field. However, since this gauge
field is fictitious, there is no dynamics associated with it.
Instead of fractionalizing the electron, here we fractionalize

an order parameter which is the PDW. In contrast to the
electron’s fractionalization, the neutral gauge field in our case
is dynamical. Since the neutral gauge field corresponds to the
gradient of the global phase of the spinor comprising of phys-
ical fields, a restoring force term, proportional to the square
of the gauge field, appears in the effective action Eq. (39).
There are other fundamental differences that appear when
we fractionalize an order parameter. At the operator level, a
PDW is defined by a commutator of dSC and dBDW orders.
Ideally, fractionalizing the PDW should be viewed from the
operator formalism which eventually leads to an effective
field theoretic description through a CP1 model [Eq. (35).
Furthermore, the fractionalization in our case enforces the
constraint which defines the PG energy scale [Eq. (4). For
T > T ∗, the �PDW is not fractionalized with no constraint
on �i j and χi j . As a result the gauge field αμ is no longer
fixed as it is the case in Eq. (40) for T < T ∗. This is in sharp
contrast to the conventional electron’s fractionalization where
the constraint is not associated with an energy scale.

There is another recent proposal of fractionalizing an order
parameter where fractionalization of a spin density wave order
parameter gives rise to an SU(2) gauge theory [57]. Consider-
ing that the emerging fields in cuprates are due to the presence
of strong electronic correlations, it is not completely out of
the scope that preformed p-h, p-p, or PDW pairs can emerge.
It is also conceivable to make a variational ansatz, where a
PDW pair fractionalizes into p-p and p-h pairs. Alternatively,
we could have chosen to fractionalize p-p pairs into p-h and
PDW pairs (�i j = �PDWχ∗

i j) or again p-h pairs into p-p and
PDW pairs (χi j = �i j�

∗
PDW). We chose to fractionalize the

PDW field as it is the most fragile out of the three, i.e., the
most difficult to stabilize within any theoretical scheme [131].

B. A microscopic model for precursors in the charge and
Cooper pairing channels: Application to Raman spectroscopy

A recent electronic Raman spectroscopy experiment [37]
performed on Hg-1223 revealed a precursor gap in the charge
channel forming due to the p-h preformed pairs. This gap
scale is characterized as the center of a broad peak in the
B2g channel, which preferentially probes the nodal regions
of the Brillouin zone. This peak is seen below Tco and the
corresponding energy scale has a doping dependence which
follows T ∗ rather than Tco. This is compared with the more
conventional B1g Raman response (preferentially probing the
AN part of the Brillouin zone) which is used to extract the
value of the precursor gap due to the p-p preformed pairs as a
pair-breaking peak. Through a similar doping dependence as
that of T ∗, these measurements connect the gap scales in both
p-h and p-p channels to the PG phase. We note that a similar
peak in the B2g channel was also observed in Hg-1201 [38]
earlier, but lacked interpretation in terms of charge order.

In this section, using a simplified microscopic model, we
construct the gap equations corresponding to the p-p, the p-h,
and the PG order parameters. Using momentum independent
results, we argue that the three gap scales are identical and
the PG is characterized by a single energy scale. We further
give the mean-field estimates of the momentum dependent gap
scales in the p-p and p-h channels. Here we only focus on find-
ing estimates on the values of the precursor gaps. A detailed
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study of the electronic Raman spectrum is left for a future
work. We also note that the concept of two kinds of entangled
preformed pairs constrained by the relation in Eq. (4) gives
E∗ as the PG energy scale, which is nontrivially related to the
precursor gaps in momentum space. The connection between
E∗ and the momentum space gaps is given by

(E∗)2 =
∑

k

�2
k =

∑
k

�2
k + χ2

k + fluctuations, (41)

where �k is the gap corresponding to the entangled PG state,
�k is the mean-field p-p gap (condensate contribution of
the preformed p-p pairs), and χk is the mean-field p-h gap
(condensate contribution of the preformed p-h pairs). Even
neglecting the fluctuations in Eq. (41), we see that the real
space constraint [of Eq. (4) can be satisfied by repartitioning
the Fermi surface with �k and χk prevailing in different parts.
E∗ should not be confused with the higher energy hump in
the B1g Raman response [37]. This higher energy hump can
be thought of as a coupling of the fermions to a collective
mode due to the fluctuations in the PG phase (e.g., similar
coupling of the fermions to a collective mode is studied in
Refs. [67–69]).

1. The microscopic model

In Sec. II we have presented the U (1) × U (1) gauge theory
of two kinds of preformed pairs. The amplitude of the p-h
pairs condense to attain a uniform component at temperatures
below Tco. The corresponding temperature for the amplitude
of the p-p pairs is T ′

c . Below these temperatures, the uniform
component of the amplitude of the preformed pairs can be
observed as precursor gaps in the fermionic spectrum. In
order to understand the momentum space structure of these
gaps, we consider a simplified microscopic model of electrons
interacting through short-range antiferromagnetic fluctuations
and an off-site density-density interaction. While a model
with short-range antiferromagnetic fluctuations leads to an
exact degeneracy between the d-SC and the d-BDW at the
hot spots (the k points where the Fermi surface intersects
the antiferromagnetic Brillouin zone), the additional off-site
density-density interaction breaks the degeneracy (slightly)
even at the hot spots by enhancing the d-BDW amplitude.
The model is treated at the mean-field level in momentum
space. Even if the order parameters are taken to be complex,
the self-consistent equations only fix the amplitude for each of
the gaps. Phase fluctuations or amplitude fluctuations are not
considered in the mean-field formalism of this section.

As a minimal model describing quasidegenerate particle-
particle and particle-hole orders, we consider the following
Hamiltonian in real space with both short-range antiferromag-
netic (AF) and off-site Coulomb interactions:

H =
∑
i, j,σ

(ti j + μ δi j ) (c†
i,σ c j,σ + H.c.)

+
∑

i j

(Ji j Si · S j + Vi j nin j ), (42)

where c†
i,σ (ci,σ ) is a creation (annihilation) operator for an

electron at site i with spin σ , ni = ∑
σ c†

i,σ ci,σ is the number

operator, and Si = c†
i,ασα,βci,β is the spin operator at site i (σ

is the vector of Pauli matrices). Ji j is an effective AF coupling
which comes for example from the Anderson superexchange
mechanism. The constraint of no double occupancy typical
of the strong Coulomb on-site interaction is implemented
through the Gutzwiller approximation [132] by renormalizing
the hoping parameter and the spin-spin interaction with

t (p) = gt (p)t = 2p

1 + p
t, (43)

J (p) = gJ (p)J = 4

(1 + p)2
J, (44)

where p is the hole doping and the density-density inter-
action does not get renormalized. We also assume that the
antiferromagnetic correlations are dynamic, strongly renor-
malized, and short ranged, as given by the phenomenology
of neutron scattering studies for cuprates [133] and Vi j is a
residual Coulomb interaction term. In the following part of
this section, we will work in momentum space.

2. Mean-field gap equations

Performing a Fourier transform and a Hubbard-
Stratonovich decoupling of the interaction in Eq. (42)
in both the particle-hole and particle-particle channels,
we obtain an effective fermionic action which takes
the form Seff = ∑

k,σ �
†
k,σ

G−1(k)�k,σ , where �k,σ =
(ck,σ , c†

−k,σ̄
, ck+Q,σ , c†

−k+Q,σ̄
) and

G−1(k, ω) =

⎛
⎜⎜⎝

ω − ξk �k χk 0
�∗

k ω + ξk 0 −χ∗
k

χ∗
k 0 ω − ξk+Q �k+Q

0 −χk �∗
k+Q ω + ξk+Q

⎞
⎟⎟⎠.

(45)

Q is the modulation wave vector for the d-BDW order param-
eter. Motivated by experiments, in this section we consider an
axial wave-vector Q relating two hot spots in the first Brillouin
zone, unless otherwise stated. The issue of the leading charge
instabilities in microscopic models is discussed at length
in the literature. The charge order with axial wave vector
can be enhanced by incorporating fluctuations [54,134,135],
considering dynamic exchange interactions [136], or off-site
Coulomb interactions [137] as in our model in Eq. (42).
Integrating the fermionic fields and minimizing the resulting
action with respect to either � (precursor gap corresponding
to the p-p pairing or d-SC order) or χ (precursor gap cor-
responding to the p-h pairing or d-BDW order) leads to the
mean-field self-consistent gap equations. They initially form
a set of coupled equations but for simplicity we will consider
the decoupled equations given by

�k,ω = − 1

β

∑
q,ω′

J−(q, ω′)�k+q

(ω + ω′)2 − ξ 2
k+q − �2

k+q

, (46)

χk,ω =− 1

β

∑
q,ω′

J+(q, ω′)χk+q

(ω + ω′ − ξk+q)(ω + ω′ − ξk+Q+q ) − χ2
k+q

,

(47)

with J±(q, ω′) being related to the original model parameter
as J±(q, ω′) ∼ 3J (p) ± V and β is the inverse temperature.
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It is however also possible to write the action as a function
of the field corresponding to the PG phase �k , which is
defined by the relation in Eq. (41). Then we minimize the
resulting action with respect to �k giving the self-consistent
gap equation

�k =− 1

β

∑
q,ω

J∗ (ω + �ξk+q

2

)
�k+q(

ω2 − ξ 2
k+q

)
(ω − ξk+q+Q) − (

ω + �ξk+q

2

)
�2

k+q

,

(48)

where J∗ = 2J+J−
J++J−

and �ξk+q = ξk+q − ξk+q+Q. Minimizing
with respect to �k is equivalent to condensing the field n+

s
defined in Eq. (12). While expressing the action in terms of
the field �k , we consider that there is no condensation of n−

s
[defined in Eq. (13)] and ignore its contribution.

In order to obtain an estimate of the energy scale associated
with �k , we first solve the gap equations (46)–(48) by taking
�, χ , �k , and J± to be momentum and frequency indepen-
dent. This leads to only one energy scale corresponding to all
three gaps �k , �, and χ with J+ ≈ J− ≈ J∗. This can also
be understood if we additionally consider ξk+Q ≈ −ξk which
gives three identical gap equations. The approximate equality
ξk+Q ≈ −ξk is valid in the AN region for an axial Q vector
connecting two hot spots in the first Brillouin zone. Hence
this alternative way of decoupling does not introduce a new
energy scale.

If we further ask the question: why would the system want
to condense the field n+

s just below T ∗ and entangle the p-p
and p-h pairs instead of condensing � or χ separately? The
answer lies in the energetics. We calculate the condensation
energies of all three possible processes Esc (for condensation
only in p-p pairs), Eco (for condensation only in p-h pairs),
and EPG (for condensation in the entangled state), given by

Esc = − 1

2J−
ρ0�

2
k=kF

,

Eco = − 1

2J+
ρ0χ

2
k=kF

, (49)

EPG = − 1

2J∗ ρ0�
2
k=kF

,

where ρ0 is the density of states at the Fermi level and kF

is the Fermi momentum. �k=kF , χk=kF , and �k=kF are the
average gaps on the Fermi level obtained from the solutions
of Eqs. (46)–(48). We find that EPG < Esc ≈ Eco, indicating
that the system maximizes the gap by choosing the entangled
solution in order to gain in energy. This gives a simple argu-
ment behind the choice of our variational ansatz of entangled
p-p and p-h pairs: the system chooses to fractionalize the PDW
pair into a p-p and p-h pairs to maximize the gap at the Fermi
surface.

The real space constraint is realized by fragmenting the
Fermi surface allowing the possibility of �k and χk to exist
at different places in momentum space. To get an insight into
the fragmentation of the two precursor gaps in momentum
space, we solve Eqs. (46) and (47) by making a series of
approximations while keeping the momentum dependence of
the gaps, the assumptions are summarized here and detailed
calculations are deferred to Appendix F. The integration over

FIG. 4. (a) Gap in the particle-particle pairing channel (�) and
the particle-hole pairing channel (χ ) in the first quadrant of the
Brillouin zone calculated using the Hamiltonian in Eq. (42) for
p = 0.12. The particle-hole pairing is considered for an axial wave
vector connecting the hot spots (also see text) in the first Brillouin
zone. The black line indicates the noninteracting Fermi surface and
the red dotted line indicates the nodal regions probed in B2g Raman
response. While the particle-particle pairs gap out the AN region,
the particle-hole pairs prevail the nodal region of the Fermi surface.
(b) The doping dependence of the particle-particle gap averaged
in the AN region (�an) and the particle-hole gap averaged in the
nodal region (χn). They both behave similarly as a function of
doping in the range 0.08 > p > 0.16 with �an ≈ χn. This result fits
the experimental trends [37] obtained in Raman spectroscopy very
well. Parameters used for this plot are J = 350 meV, V = J/20, and
κAF = 0.1 r.l.u. The dashed lines schematically indicate the doping
region where antiferromagnetic order and the superconducting dome
lies.

Matsubara frequency is performed analytically considering
the couplings J± to be frequency independent. Then the
momentum integration is performed by restricting the mo-
mentum exchange to be close to QAF = (π, π ) (AF wave
vector) with a broadening given by κAF which replicate the
short-range nature of the antiferromagnetic fluctuations. In
fact, this broadening can be directly related to the coherence
length (ξAF) of the antiferromagnetic fluctuations with κAF ∼
(ξAF)−1. The restriction in the momentum integration helps
us in obtaining analytical expressions for the solution of the
gaps. We should note that the χ is the precursor gap and thus
only represents the uniform component of the amplitude of
the d-BDW order.

3. Results

We find the solutions of the gap equations for each k point
in a quadrant of the Brillouin zone independently. Owing
to the competition between the two orders we only keep
the solution which gives the bigger gap of the two at each
k point. We take the band parameters of Hg-1201 [37,138]
with, choosing the nearest-neighbor hopping t as the energy
scale, t ′/t = −0.2283, t ′′/t = 0.1739, t ′′′/t = −0.0435, fix
the chemical potential in order to obtain a desired doping
and take β = 50. The extent of the short-ranged nature of
the antiferromagnetic interaction is estimated from the neu-
tron scattering experiment and give κAF ∼ 0.1 2π

a . One typical
result obtained for J = 350 meV (= 0.85t ), V = J/20, and
p = 0.12 is shown in Fig. 4(a). The p-h pairs preferentially
gap the Fermi surface close to the nodal region and the p-p
pairs dominate in the AN region and is in good agreement
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with the fact that the precursor in the charge channel has
been observed in the B2g probing preferentially the nodal
region of the Brillouin zone shown schematically by the red
dotted line. Since p-h and p-p pairs prevail at different regions
of the Fermi surface, it further justifies the consideration
of two gap equations Eqs. (46) and (47) as decoupled. The
quasiparticle dispersion (or the excitation spectrum) can be
written in a form analogous to the conventional BCS result
with reconstructed bands due to the presence of a modulating
order,

E2
±(k) = 1

2 (ξk + ξk+Q) ±
√

(ξk − ξk+Q)2 + 4|χk|2 + |�k|2

= ε2
± + |�k|2, (50)

where ε± gives the form of the reconstructed bands. Equa-
tion (50) is a usual form of the quasiparticle dispersion in a
coexisting state obtained by diagonalizing the Hamiltonian.
We also show the d-BDW gap with the diagonal wave vector
in Fig. 6(g).

We perform the same calculation for a continuous evo-
lution of the doping between p = 0.08 and p = 0.16, with
axial wave-vector Q which changes with doping. Note that
the d-CDW wave vector found in experiments are not exactly
equal (though very close) to the value obtained this way.
But the doping dependence of the experimentally observed
value is similar to the one used here. In order to compare
the results to a recent Raman spectroscopy experiment, in
Fig. 4(b), we look at the d-SC gap averaged in the AN region
(�an) and compare it with the d-BDW gap averaged in the
nodal region (χn). Note that the d-BDW gap need not be
in the immediate proximity of the nodal line (kx = ky) to be
visible in Raman experiment as the region probed in the B2g

symmetry also extend away from the nodal line with nonzero
weights at the hot spots as shown schematically by the red
dotted line in Fig. 4(a). The evolution of the precursor gaps
as a function of doping is depicted by green and red lines in
Fig. 4(b). We see that, for a fixed temperature, both the gaps
have similar magnitudes and decrease linearly in a range of
doping p = 0.08 to p = 0.16 similar to doping dependence of
the pseudogap temperature T ∗. The dome shape of Tco and T ′

c
is expected to be recovered by taking into account the effect
of phase fluctuations. In a standard preformed pair scenario
this effect has been included on phenomenological grounds by
introducing a damping term in the electronic Green’s function
and a finite lifetime for the preformed pairs above Tc leading to
a good description of the ARPES spectra for all temperatures
below T ∗ [12]. These results are very close to the behavior
observed in Raman scattering experiment where comparison
between the response in the B1g symmetry (which probes the
AN region) and in the B2g symmetry (which preferentially
probes the nodal region) lead to a similar conclusion of the
p-h and the p-p gaps being quasidegenerate and having the
same doping dependence [37] as that of T ∗.

C. Charge modulation phase coherence on a macroscopic scale
from scanning tunneling microscopy (STM)

The Higgs mechanism described in this paper predicts
two distinct signatures in STM measurements under applied

magnetic field (B). First, the Higgs mechanism at T ∗ results
into a constraint (|χi j |2 + |�i j |2 = E∗2) between the d-BDW
field χi j and the d-SC field �i j . In the presence of magnetic
field, the amplitude of the d-SC field gets suppressed inside
the halo region surrounding vortex cores. So, due to the
constraint, the amplitude of the d-BDW order parameter is
enhanced inside the vortex halos. Evidence for enhancement
of the d-CDW (real part of the d-BDW) inside the vortex cores
is already evident in STM results [19–22]. This feature is also
expected in theories with emergent SU(2) symmetries [139]
or competing orders [140]. But there is a second feature that
is unique to the formalism of this paper and is expected
to be captured in STM measurements. The special Higgs
mechanism freezes the global phase of the spinor comprising
of �i j and χi j at T ∗. Subsequently, the relative phase of the
spinor gets frozen at a lower temperature Tc. Since both the
global and the relative phases of the spinor gets frozen below
Tc, χi j also acquires a spatial phase coherence along with �i j .
So we look at the real part of the d-BDW order given by

Re(χi j ) = d̂|χi j | cos [Qr + φ(r)], (51)

where φ(r) is the phase of χi j . We remind the reader that
r = (ri + r j )/2 denotes the midpoint of the bonds and φ(r) ≡
θχ (r). In Fig. 5 we plot the spatial profile and the histogram
of the phase φ(r) obtained in the spatial-phase resolved STM
measurement of BSCCO. The details on the determination of
φ(r) is given in Appendix G. In the d-SC phase (T < Tc),
the d-CDW has been observed inside the vortex halos. More
recently, STM visualization [39] of density-of-states modu-
lations within the halo surrounding Bi2Sr2CaCu2O8 vortex
cores reveals a complex energy dependence, with Bogoliubov
quasiparticles at lower energies and two sets of particle-
hole symmetric modulations occurring at energies near the
gap edge. Focusing on the gap-edge modulations with Q =
(0, 0.25)2π/a0 (a0 is the lattice constant), they appear to
exhibit spatial phase coherence between halo regions sur-
rounding different vortices, as shown in Fig. 5(a), with a
global phase coherence length much larger than the typical
size (∼5 lattice spacings) of the vortex halo [119]. The phase
coherence becomes apparent looking at the histogram of the
phase φ(r) [with respect to a reference φ0(r)] in Fig. 5(b). In
contrast, the usual phase distribution of the CDM at B = 0
is completely random due to the presence of disorder, as
shown in Figs. 5(c) and 5(d). This is a very unusual situa-
tion for charge ordering, which finds a natural explanation
within our scenario. The idea of global phase coherence is
usually discussed in the context of granular superconductors
where local superconducting puddles are formed [141–144].
These superconducting puddles, typically of the size of the
coherence length, attain global phase coherence below a
characteristic temperature [145]. In Fig. 5(a) the scenario is
different as the puddles are formed of the charge order and
still attain phase coherence over large distances. Note that
the map shown in Fig. 5(a) is extracted by subtracting the
zero field data from the data for B = 8.5 T. As a result, the
d-CDW puddles in Fig. 5(a) are only visible near the vortex
cores.

224511-14



FRACTIONALIZED PAIR DENSITY WAVE IN THE … PHYSICAL REVIEW B 100, 224511 (2019)

FIG. 5. Experimental STM data [119] showing global spatial
d-CDW phase coherence inside vortex cores. (a) The amplitude and
phase of the CDM with d-symmetry form factor with predominant
wave vector Qy inside stable vortex cores. The vortex core has radius
of 2 nm (shown by red dotted circle). The modulation is represented
by blue and yellow colors which are measured with respect to
an arbitrary reference phase (modulation wavelength λy = 2π/Qy),
shown by the gray color. It can be seen that the measured phase inside
the vortex core is relatively constant with respect to the reference
phase. (b) Histogram plot of the relative phase between density
wave state inside the vortex core and the reference phase. The plot
shows that the relative variation of phase is mostly centralized to
a single value inside the vortex core with a standard deviation of
12%(2π ). For this plot, six to nine vortices were used because of the
stability issue of vortex [119]. (c) The map of the spatial phase of the
CDM modulating along the y direction is shown for B = 0 T [23].
(d) Histogram plot of the spatial phase data in (c). It shows that
the disorder makes the usual phase distribution of the CDM purely
random with equal values in every bin. Comparison of the histograms
in (b) and (d) highlights the remarkable global phase coherence of the
CDM inside the vortex cores. Note that while plotting the histogram
in (b), the disordered B = 0 T part is subtracted.

D. Multiple orders in the PG phase:
Pair density waves and loop current state

A remarkable outcome of the special Higgs mechanism at
T ∗ is that it can induce the formation of multiple orders in the
PG phase.

1. Pair density waves in the vortex halos

STM observation [39,40] of PDW order [131], with both
Q and Q/2 modulations, in the halo surrounding vortex cores
of BSCCO has inspired many theoretical works [41–43].
While some theoretical works consider the Q/2 PDW order as
the “mother state” which drives the pseudogap phenomenol-

ogy [42], others treat the Q/2 PDW order as a competitor of
the d-SC order [41].

Within our theory, the PDW order emerges as a composite
field of the p-p and p-h pairs. From the alternative viewpoint,
the PDW is a fundamental object in the theory and gets
fractionalized to p-p and p-h pairs. In both the perspectives,
we have the following features of the PDW order: (i) It can
be observed as “short-range” PDW at low temperatures. (ii) It
can be observed only in the vortex halo due to the pinning of
the d-BDW order. (iii) It can have both extended s-wave and
d-wave symmetric components. (iv) The modulation wave
vector of the PDW order will be Q, which is the same as that
of the d-BDW order. Within our current formulation, the Q/2
PDW order is not a natural outcome. However, we can in prin-
ciple accommodate the Q/2 PDW order as one of the primary
states along with d-SC and d-BDW orders by constructing a
quintuplet (see Sec. IV B). In order to analyze this possibility,
we solve the mean-field gap equation [Eq. (F12) for the Q/2
PDW order parameter. We find that, in the nodal region, the
value of the Q/2 PDW gap is nearly half the value of the
d-BDW gap with Q modulations (also see Appendix F 3).
Hence, d-BDW with Q is favored energetically as a primary
state and we treat the Q/2 PDW as a competing order (not as
a primary state) which appears only in the vortex halos.

In Sec. III A 2 we already indicated that the PG phase can
be viewed as consisting of preformed PDW pairs which get
fractionalized into p-p and p-h pairs. The PDW field locally
reconfines at Tco. For T < Tco, two possible PDW fields can
appear as bilinear in �i j and χi j . The one involving the
relative phase is defined in Eq. (36). The other combination
is given as

�̃PDW(i) =
∑

j∈n.n. of i

χi j�i j, (52)

where the sum is over the nearest neighbors (n.n.) of i. �̃PDW

carries the global phase (θ� + θχ ) which is the sum of the
phases of χi j and �i j . Rewriting Eq. (52) in terms of the
amplitude and the phase, we get

�̃PDW(i) =
∑

j∈n.n. of i

∣∣χQ
i j

∣∣|�i j |ei(θ�+θχ )eiQr

= ∣∣�̃Q
PDW(i)

∣∣ei(θ�+θχ )eiQr, (53)

where it should be noted that the amplitude (�̃Q
PDW) of the

modulating PDW field also depends the value of Q. For
T < T ∗, θ� + θχ is frozen. But as the amplitudes |χQ

i j | and
|�i j | still fluctuate, they will obscure the modulations of
the mean-field 〈�̃PDW(i)〉 = 〈∑ j |χQ

i j ||�i j |eiQr〉. For temper-
atures below T ′

c , the PDW order parameter will be long ranged
(in a clean system) when both the d-SC and the d-BDW
fields acquire uniform mean values, though this transition
is a crossover. In contrast, the other form of PDW [�PDW

as defined in Eq. (36) involving the relative phase acquires
long-range coherence at a lower temperature Tc. From Eq. (53)
it is evident that the PDW order parameter occurs with the
same wave vector (Q) [40] as the d-BDW order parameter
χ

Q
i j . The local amplitude of the PDW order parameter will be

the maximum in regions where there is a maximum nonzero
overlap of the amplitudes |�i j | and |χQ

i j | on the same bond 〈i j〉
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(this will be the case in the halo [39,40] region of the vortex
in the presence of magnetic field). The momentum structure
of the order parameter �̃PDW will depend on the choice of
the wave vector of χi j . An axial modulation wave vector will
give a momentum space structure of χi j with both s-wave and
d-wave components. As a result, the PDW order parameter
will consist of both extended s-wave and d-wave components.

2. Loop current state

Apart from the finite Q orders at low temperatures, the PG
also sustains Q = 0 orders. We discuss one such Q = 0 order,
magnetoelectric loop currents, which break discrete symme-
tries like parity and time reversal. Within our framework,
the loop currents appear as an “auxiliary” or a “preemptive”
order [146].

Though the PDW order can be observed only below T =
T ′

c , the fluctuations of the PDW field [Eq. (52) in the temper-
ature regime T > T ′

c can give rise to auxiliary order parame-
ters. With the motivation to generate a Q = 0 (translationally
invariant) emergent loop current order in the PG phase, we
construct a secondary order parameter following Ref. [147],

l = ∣∣�̃Q
PDW

∣∣2 − ∣∣�̃−Q
PDW

∣∣2, (54)

where �̃
Q
PDW is the amplitude of the PDW field and its value

depends on the choice of the modulation wave vector Q. The
PDW field transforms under translation T , time reversal T R,
and parity P as

T
(
�̃

Q
PDW

) = eiT Q�̃
Q
PDW, T R

(
�̃

Q
PDW

) = (
�̃

−Q
PDW

)∗
,

P
(
�̃

Q
PDW

) = �̃
−Q
PDW. (55)

As l is composed of terms depending on (�̃Q
PDW)

∗
�̃

Q
PDW and

(�̃−Q
PDW)

∗
�̃

−Q
PDW, it is a translationally invariant order parameter

[under translation T (l ) = l]. The loop current order parameter
l also satisfies

T R(l ) = −l, P(l ) = −l, and T RP(l ) = l. (56)

Thus the loop current order parameter defined in Eq. (54)
satisfies the same symmetries as the magnetoelectric loop
current state proposed by Varma [148], which is often used
to interpret the intraunit cell magnetic order seen in polarized
elastic neutron scattering measurements [50]. It is important
to highlight that the discrete Z2 symmetries like parity or
time reversal is spontaneously broken by the secondary order
parameter l , which is composed of PDW fluctuations. So
a nonzero average value of 〈l〉 does not mean 〈�̃Q

PDW〉 �=
〈�̃−Q

PDW〉 (i.e., the PDW ground state does not break parity or
time reversal) [147]. Possibilities of preemptive discrete Z2

symmetry breaking outside the Landau paradigm [149] occur-
ring due to secondary order parameters is already discussed in
Refs. [54,147]. Interestingly, the preemptive transition occurs
at a higher temperature [54] than the primary order transition
temperature (in our case T ′

c for the PDW order), thus jus-
tifying the presence of loop current state in the T > T ′

c . In
this paper we only justify that the loop current state can be
visible for temperatures T > T ′

c and do not explicitly show
that the upper temperature limit is T ∗. There are also other
phenomenological proposals [150,151] and proposals based
microscopic three orbital models [152,153] for the existence

of loop current order in the PG phase. We also note that
the magnetic moments derived from microscopic mean-field
models are usually far smaller compared to what it is found
in experiments [42]. The preemptive transition can also give
way to nematicity [48,154] and the breaking of the inversion
symmetry recently observed in the study of the optical second
harmonic generation [52].

IV. CONCLUSIONS AND DISCUSSIONS

A. Summary of the work

Throughout this paper we have shed light into the Franken-
stein nature of the PG phase of underdoped cuprates. We
proposed that the PG phase is an entangled state of p-p and p-h
preformed pairs. In the following, we summarize the exclusive
features of this proposal.

(1) A special Higgs mechanism entangles the two pre-
formed pairs at T ∗ by freezing the global phase and a
gap opens in the fermionic excitation spectrum. This entan-
glement results into a strong competition between p-p and
p-h pairs. The relative phase and the two amplitudes of the
fields corresponding to the two pairs fluctuate. The amplitude
fluctuations are related by a constraint |z1|2 + |z2|2 = (E∗)2.
This is followed by a unique sequence of events occurring
as the temperature is reduced. The amplitudes of the p-h
and p-p pairs get condensed at lower temperatures Tco and
T ′

c , respectively. A second Higgs mechanism occurs at T =
Tc and both the superconducting and bond-excitonic orders
acquire phase coherence leading to a supersolidlike phase.
Thus, we have different temperature lines in the rich phase
diagram of cuprates.

(2) Equivalently, the pseudogap phase can be understood
as a “fractionalized” PDW order. Indeed at T < Tc the system
orders into a short-range PDW state. In the PG phase the
PDW order deconfines to release two elementary components,
p-p and p-h preformed pairs, which stay entangled through
the constraint �2

i j + χ2
i j = E∗2. The corresponding variational

ansatz for this entangled state is |PG〉 = |d-SC〉 + |d-BDW 〉,
which corresponds to a coherent superposition of “dead cat”
and “alive cat” in the Schrödinger’s thought experiment.

(3) This theory relates the PG phase to both p-p and p-h
instabilities, without being restricted to particular parameter
regimes. Using a simplified microscopic model, we obtain the
doping dependence of mean-field precursor gaps arising out of
both these instabilities and the gap repartition in the Brillouin
zone. These results show close resemblance to the Raman [37]
spectroscopy findings.

(4) The two stage Higgs mechanism has distinct experi-
mental consequences at low temperatures. For temperatures
T < Tc, both d-SC and d-BDW show phase coherence. A
distinguishing feature occurs with the application of magnetic
field. In the presence of a small magnetic field, superconduct-
ing vortices appear with a suppressed superconducting order
parameter inside the halo region surrounding vortex cores.
The competing d-BDW order is enhanced inside the vortex
halos. Remarkably, STM measurements see a locking of the
phase slips of the charge modulations in a much larger region
of space than the typical size of a vortex halo. Our theory can
explain this unusual feature seen in STM measurements.
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(5) Other unique natures of two states d-SC and d-BDW
forming a doublet is the emergence of multiple orders like
PDW or loop currents, which are higher order combinations of
the primary state. From the perspective of fractionalized PDW,
the PDW reconfines at low temperatures. Thus this formalism
not only accommodates finite Q orders like d-CDW and PDW
at lower temperatures, it also gives possibilities of Q = 0
orders at higher temperatures.

B. Generic nature of the model

In this section we outline the generic nature of the model
proposed in this paper and discuss the possibilities of accom-
modating multiple orders as primary states.

The spinor in this work consists of the d-SC field and the
d-BDW field with Q modulations. A PDW operator rotates
one constituent of the spinor to another. This structure of
the spinor is chosen with motivations from experiments in
underdoped cuprates. Some of them include: (i) Ubiquity
of CDM with Q modulations. (ii) Competition between the
d-CDW order and the d-SC order. (iii) Signatures of near
degeneracy of these two orders in the underdoped regime of
the phase diagram. Even with this form of the spinor, the first
generic aspect is the choice of the Q vector for the d-BDW
field. To add to this, we can also consider d-BDW fields with
multiple wave vectors. As an example, the case for two wave
vectors is already shown in the Appendix D 2 b.

One of the challenges in obtaining a generic model for
cuprates is the presence of plethora of nonsuperconducting
orders [108,117,155]. Theoretically, these multiple orders are
often treated as competing or intertwined with superconduc-
tivity [91,107,108,117,155–160]. The skeleton of the theory
presented in this paper leaves room for multiple components
in the spinor to accommodate many primary states. As an
example, here we show how to incorporate the recently ob-
served Q/2 PDW order [39,40] as one of the primary states.
If we consider d-BDW with two wave vectors Qx and Qy

and d-wave PDW with two wave vectors Qx/2 and Qy/2, the
spinor is given as a quintuplet,

ψ =

⎛
⎜⎜⎜⎜⎜⎝

z1

z2

z3

z4

z5

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

χQx

χQy

�

�Qx/2

�Qy/2

⎞
⎟⎟⎟⎟⎟⎠, (57)

where (for 〈i, j〉 site indices on a bond and σ the spin
index) χQx = d̂

∑
σ c†

iσ c jσ eiθ1 , χQy = d̂
∑

σ c†
iσ c jσ eiθ2 , � =

d̂
∑

σ σc j−σ ciσ eiθ3 , �Qx/2 = d̂
∑

σ σc j−σ ciσ eiθ4 , and �Qy/2 =
d̂
∑

σ σc j−σ ciσ eiθ5 with θ1 = Qx · r + θ̃1, θ2 = Qy · r + θ̃2,
θ4 = Qx · r/2 + θ̃4, θ5 = Qy · r/2 + θ̃5, and r = (ri + r j )/2.
The global phase of the quintuplet is frozen at T ∗ which
will give the constraint

∑5
a=1 z∗

aza = (E∗)2. The fluctuations
in the PG phase will be governed by an SU(5) chiral model
or equivalently a CP4 model. The corresponding collective
modes will be η modes with charge 2 and spin 0; and density
modes (similar to ηz in Appendix E 1) with charge 0 and spin
0. Note that in this case, we can have PDW η modes with
different wave vectors.

To illustrate the power of the concept, let us try to infer
what happens when oxygen doping is lowered, below p =
0.06. We are then in a regime closer to the Mott insulator,
hence it is legitimate to guess that the superconducting modes
will be absent, whereas the AF and charge modes can be
strengthened. We can construct the SU(2) spinor made of
incommensurate AF and charge fluctuations

ψ =
(

z1

z2

)
=
(

ϕAF
Q1

χQ2

)
, (58)

where (for 〈i, j〉 site indices on a bond and σ the spin index)
ϕAF

Q1
= ∑

σ (c†
iσ ci−σ − c†

jσ c j−σ )eiθ1 , χQ2 = d̂
∑

σ c†
iσ c jσ eiθ2 ,

and with θ1 = Q1 · r + θ̃1, Q1 � (π, π ) + δ, and θ2 =
Q2 · r + θ̃2, r = (ri + r j )/2. A gap can then open at T ∗ due
to the constraint

∑2
a=1 z∗

aza = (E∗)2, made of a superposition
of short-range AF fluctuations (z1) and short patches of
charge modulations (z2). At lower temperatures, the quantum
superposition of those two modes will form “stripes,” a
feature which is ubiquitous in La compounds [161–165].

As a final illustration, we show the possibility of including
the d-SC, AF, d-BDW with two wave vectors Qx and Qy and
PDW with two wave vectors Qx/2 and Qy/2, all as primary
states in the spinor. The associated spinor is given as

ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

z1

z2

z3

z4

z5

z6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ϕAF
Q1

χQx

χQy

�

�Qx/2

�Qy/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (59)

where ϕAF
Q1

is defined in the same way as in Eq. (58) and the
other components are defined as in Eq. (57). The constraint
in this case will be given as

∑6
a=1 z∗

aza = (E∗)2. The corre-
sponding fluctuations in the PG phase will be governed by a
SU(6) chiral model or a CP5 model.

C. Links with previous works

1. Competing order scenarios

The ubiquitous observation of charge order and the
evidences of its competition with superconductivity led
to several works based on the competing order sce-
nario [91,140,145,160,166]. There is substantial evidence that
the competition between the d-SC and d-CDW is not of the
usual Ginzburg Landau type with two independent energy
scales [167]. Experiments also indicate a near degeneracy
of the two orders through: (a) Similarity of T 3D

co (transition
temperature of high field 3D uniaxial long-range charge or-
der [30,31,168]) and Tc. (b) Closeness of the pair breaking
peaks in B2g and B1g Raman response [37]. Our theory is
motivated from this near degeneracy. The entanglement be-
tween the p-p and p-h pairs results into a strong competition
between them and their energy scales are constrained by the
PG energy scale, which makes it different from the usual
Ginzburg Landau approach. In addition, our theory is based on
the presence of preformed pairs in contrast to the competing
order scenarios.
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2. Fractionalization of an order parameter

The idea to associate the T ∗ line of the pseudogap with a
Higgs phenomenon has received a huge amount of attention
recently, in the special case of SU(2) gauge theories where the
spin density wave order fractionalizes into Higgs fields [57]
with spinons being an integral part of the theory. Our model
has in common the Higgs mechanism at T ∗, but in the context
of a U (1) × U (1) gauge theory. Though in both approaches
the electron is not fractionalized, we fractionalize a PDW
field. In particular, our theory does not require spinons to be
an essential ingredient for the PG phase, but rather to have
a quasidegenerate doublet of preformed pairs, which then
undergo the Higgs mechanism at T ∗. One might wonder about
the role of magnetism in the whole picture. In the simplified
microscopic model (Sec. III B) developed in order to extract
the precursor gaps, magnetism is the “glue” for the formation
of both the precursors. Dynamic, short-range, antiferromag-
netic correlations are at the core of the formation of both order
parameters [113]. Note that the spin fluctuations are also a
key in the emergent SU(2) theories. Within this theory, the
experimentally observed spin excitation spectrum [169,170]
has already been discussed for the compound Hg-1201 [171].
We expect these results to remain similar within our approach.

3. SU(2) fluctuations

Now we would make links with previous works based on
SU(2) fluctuations. The Higgs mechanism at T ∗ proposed in
this paper is an idea which supports a scenario where there is
no fractionalization of the electron above 6% of doping, but a
complex class of SU(2) fluctuations emerges. The fluctuations
below T ∗ can be described by an SU(2) chiral model. The
real space chiral models have the tendency of resulting into
phase separation, which was described in a previous work
with the image of droplet formation [172]. The competition
between the d-CDW and the d-SC order revealed by the
magnetic field–temperature phase diagram can be described
within an O(3) NLσM analogous to the previous works [167].
The PDW ladder operators η and η† of the SU(2) fluctuations
can form a collective mode, which is a signature of the
O(3) fluctuations below T ∗ [173]. The concept introduced in
this paper give some similar phenomenology as that of the
emergent SU(2) symmetry picture.

Historically, the PG state was either discussed as a
crossover due to the formation of preformed Copper pairs

or a phase transition induced by a competing p-h instability.
Here the two approaches are not opposed anymore, but are
amalgamated into a single model: the PG state involves a true
phase transition with two kinds of entangled preformed pairs.
The model is a perfect synthesis of earlier debates.

The Higgs mechanism involving a spinor is a novel the-
oretical idea. To the best of our knowledge, this concept is
unique not only in the field of condensed matter physics,
but an analog is also absent in other areas of theoretical
physics. Connections between different fields of theoretical
physics is not unusual. For example, the pioneer work of
Anderson [56] in the context of superconductivity inspired
the remarkable discovery of its relativistic counterpart in the
form of the “Higgs particle” [174] in particle physics. We
believe our theory can also find its applications in diverse
fields of physics motivating future theoretical and experimen-
tal discoveries. For instance, the spinor Higgs mechanism will
likely lead to emergence of new states of matter in condensed
matter physics like in graphene, Weyl semimetals, topological
superconductors, or even in particle physics like in quantum
chromodynamics.
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APPENDIX A: ANALOGY OF SPINOR HIGGS
MECHANISM TO THE CONVENTIONAL ONE

We give a brief overview of the special Higgs mechanism
of a spinor to describe the PG phase of underdoped cuprates in
the form of Table I. While identifying different features of the
Higgs mechanism, we also give the corresponding analogy to
the Higgs mechanism in a conventional superconductor.

APPENDIX B: SPINOR HIGGS MECHANISM

1. The standard Higgs mechanism

Let us recall in this Appendix how the standard Higgs mechanism is working. We start with an action

Sa = 1

2g

∑
q

ψ†(qθq + aq)2ψ + 1

4
FμνFμν. (B1)

The goal is to integrate out the Goldstone mode θq and for this we complete the square in θ in Eq. (B1), which leads to
(assuming condensation of the field ψ†ψ = |ψ0|2)

Sa =
∑

q

{
|ψ0|2

2g

[
q2

(
θq + q · aq

q

)2

+ (a⊥
q )2

]
+ q2

2
(a⊥

q )2

}
, (B2)
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TABLE I. Analogy of the special Higgs mechanism to describe the PG phase of underdoped cuprates and the Higgs mechanism of a
conventional superconductor. The term “Meissner effect” is used to identify the expulsion of the EM field. No Meissner effect in the case of
the Higgs mechanism at T ∗ means that the EM field will not be expelled.

Higgs mechanism Higgs mechanism at T∗

for a conventional superconductor

Higgs field Superconducting order parameter Field n+
s = ψ†ψ = |z1|2 + |z2|2

Broken symmetry Charge U (1) Global U (1) phase of the spinor ψ = (z1

z2

)
(Results in entangled preformed pairs)

Gauge field Aμ aμ

(EM vector potential) [Defined in Eq. (3)]
Gap in the excitation spectrum Superconducting gap Pseudogap energy scale E∗ =

√
|z1|2 + |z2|2

(Mass of the Higgs boson)
Experimental signature Meissner effect No Meissner effect

(Signatures at lower temperatures like charge modulation phase coherence)

with

a⊥
q = aq − q(q · aq)/q2,

and

(a⊥
q )2 = a⊥

q · a⊥
−q.

The integration over θ is now straightforward and leads to an effective action

Seff
a =

∑
q

( |ψ0|2
2g

+ q2

2

)
(a⊥

q )2.

2. U (1) × U(1) theory, the special “Higgs mechanism”

We now treat the first Higgs mechanism, starting with the action

Sa,b =
∑

q

1

2g
ψ†(qθq + τ3qϕq + aq + τ3bq)2ψ + 1

4
FμνFμν,

where ψ is the spinor defined in Eq. (2) and we assume that ψ†ψ condenses so that n+
s = |ψ0|2 is a constant. We want to

integrate out the phase θ and for this we complete the square in θq, leading to (dropping the FμνFμν terms for a while)

Sa,b = 1

2g

∑
q

[
|ψ0|2q2

(
θq + q

|ψ0|2q2
· ψ†(qτ3ϕq + τ3bq + aq)ψ

)2

− [q · ψ†(qτ3ϕq + τ3bq + aq)ψ]2

|ψ0|2q2
+ ψ†(qτ3ϕq + τ3bq + aq)2ψ

]
. (B3)

Integrating out the phase θq in Eq. (B3) leads to the effective action

Seff
ϕ,a,b = 1

2g

∑
q

[
ψ†(qτ3ϕq + τ3bq + aq)2ψ − [ψ†q · (qτ3ϕq + τ3bq + aq)ψ]2

q2|ψ0|2
]
. (B4)

a. Differentiation with respect to aq

The first mean-field equation comes from the constraint ∂Seff
ϕ,a,b/∂aq = 0 which gives

0 = ψ†(qτ3ϕq + τ3bq + aq)ψ − ψ†qψ

q2|ψ0|2 ψ†q · (qτ3ϕq + τ3bq + aq)ψ, (B5)

which finally leads to

|ψ0|2a⊥
q = −ψ†τ3ψb⊥

q , (B6)

with a⊥ and b⊥ defined as in Eq. (B2). Equation (B6) is important since it tells us that the freezing of the phase θ and the
condensation of the Higgs boson |ψ0|2 could not provoke the expulsion of the field a⊥ until ψ†τ3ψ in Eq. (B6) is condensed.
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Adding back the FμνFμν and F̃μν F̃μν terms leads to( |ψ0|
2g

2

+ q2

)
a⊥

q = −
(

ψ†τ3ψ

2g
+ q2

)
b⊥

q , (B7)

b. Effective action at T ∗

The system is invariant with respect to the second U (1), which means that we can always re-absorb the phase ϕ into a
redefinition of b‖

μ → b‖
μ − ∂μϕ. We can choose the gauge such that, for example, b‖ = 0.

Writing the fields a and b in terms of the longitudinal and transverse components as a = a⊥ + a‖ and b = b⊥ and putting
back in Eq. (B4), we get

Seff
ϕ,a,b = 1

2g

∑
q

{
ψ†[(qτ3ϕq + a‖

q)2 + (a⊥
q + τ3b⊥

q )2]ψ − [ψ†τ3ψq2ϕq + q · a‖
qψ

†ψ + q · (ψ†τ3ψb⊥
q + ψ†ψa⊥

q )]2

q2|ψ0|2
}
. (B8)

From Eq. (B8) and using Eq. (B6), we obtain

Seff
ϕ,b = 1

2g

∑
q

(
|ψ0|2 − (ψ†τ3ψ )2

|ψ0|2
)[

q2ϕ2
q + (b⊥

q )2
]
. (B9)

Using n+
s = ψ†ψ and n−

s = ψ†τ3ψ we finally get

Seff
ϕ,b = 1

2g

∑
q

4|z1|2|z2|2
n+

s

[
q2ϕ2

q + (b⊥
q )2
]
. (B10)

We recover the (∂μϕ)2 in Eq. (18), hence proving that the fluctuations below T ∗ are described by the SU(2) chiral model, itself
equivalent to the CP1 model, or also the O(3) NLσM with fluctuating η fields.

3. Integration of all the Goldstone modes: Derivation of the effective action Seff
a,b

In this Appendix we formally integrate out the Goldstone modes θ and ϕ in the action in Eq. (2) to arrive at an effective
action in Eq. (11). As mentioned in the main text, the field derivative term in Eq. (2) has a quadratic form |Dμψ |2 = |∂μψ0|2 +
ψ†(∂μθ + τ3∂μϕ − aμ − τ3bμ)2ψ . Ignoring the amplitude fluctuations (|∂μψ0|2 = 0), the action in the momentum space reads
as

Sa,b[θ, ϕ] =
∑

q

[
1

2g
ψ†(qθq + τ3qϕq + aq + τ3bq)2ψ + V (ψ0) + 1

2
(q × aq)2 + 1

2
(q × bq)2

]
. (B11)

Note that V (ψ ) has been replaced by V (ψ0) in Eq. (B11) as it is independent of the Goldstone modes. We have used 1
4 FμνFμν =

1
2 (q × aq)2 and 1

4 F̃μν F̃μν = 1
2 (q × bq)2. Expanding the terms in Eq. (B11) and using the spinor structure of ψ in Eq. (1), we get

Sa,b[θ, ϕ] = 1

2g

∑
q

{
n+

s q2θ2
q + 2θq(n−

s q2ϕq + n+
s q · aq + n−

s q · bq)
}

+ 1

2g
ψ†(τ3qϕq + ãq + τ3Aq)2ψ + V (ψ0) + 1

4
FμνFμν + 1

4
F̃μν F̃μν, (B12)

where
n+

s = |z1|2 + |z2|2,
n−

s = |z1|2 − |z2|2. (B13)

We use the definition

T1 := 1

2g

∑
q

ψ†(τ3qϕq + aq + τ3bq)2ψ

= 1

2g

[
n+

s q2ϕ2
q + 2ϕq{n−

s q · aq + n+
s q · bq} + n+

s a2
q + n+

s b2
q + 2n−

s aq · bq
]

= 1

2g

(
n+

s q2ϕ2
q + 2ϕq{n−

s q · aq + n+
s q · bq} + n+

s

(
aq + n−

s

n+
s

bq

)2

+ n+
s

[
1 −

(
n−

s

n+
s

)2
]

b2
q

)
. (B14)
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Completing the square in θq in Eq. (B12), and neglecting V (ψ0) and the potential strength FμνFμν and F̃μν F̃μν we obtain

δS̃a,b[θ, ϕ] = n+
s q2

2g

∑
q

{
θq +

(
n−

s q2ϕq + n+
s q · aq + n−

s q · bq

n+
s q2

)}
− n+

s q2

2g

(
n−

s q2ϕq + n+
s q · aq + n−

s q · bq

n+
s q2

)2

+ T1. (B15)

First, we integrate over θq which results into an effective action δS̃eff
a,b[ϕ] where e−δS̃eff

a,b[ϕ] ≡ ∫
Dθ δS̃a,b[θ, ϕ] with

δS̃eff
a,b[ϕ] = −

∑
q

n+
s q2

2g

(
n−

s q2ϕq + n+
s q · aq + n−

s q · bq

n+
s q2

)2

+ T1

= −
∑

q

[
n+

s q2

2g

(
n−

s

n+
s

)2

ϕ2
q + n−

s

g
ϕq

(
q · aq + n−

s

n+
s

q · bq

)
+ n+

s

2gq2

(
q · aq + n−

s

n+
s

q · bq

)2]
+ T1. (B16)

Using the form of T1 given in Eq. (B14) and after a bit of algebraic manipulations, the action in Eq. (B16) can be written as

δS̃eff
a,b[ϕ] =

∑
q

{
n⊥

s q2

2g

[(
ϕq + q · bq

q2

)2

−
(

q · bq

q2

)2
]

+ n⊥
s

2g
b2

q + n+
s

2g

(
a⊥

q + n−
s

n+
s

b⊥
q

)2}
, (B17)

with

n⊥
s = n+

s

[
1 −

(
n−

s

n+
s

)2
]
, (B18)

with the notation a⊥ = a − q(q · a)/q2 and a2
q = aq · a−q (idem for b). We now integrate over ϕq which results into an effective

action δSeff
a,b where e−δSeff

a,b ≡ ∫
Dϕ δS̃eff

a,b[ϕ] with

δSeff
a,b =

∑
q

[
n⊥

s

2g
(b⊥

q )2 + n+
s

2g

(
a⊥

q + n−
s

n+
s

b⊥
q

)2
]
. (B19)

Simplifying Eq. (B19), and putting back the potential terms, we obtain Eq. (11) of the main text,

Seff
a,b =

∑
q

n+
s

2g
[(a⊥

q )2 + (b⊥
q )2] + 2n−

s

2g
a⊥

q · b⊥
q + q2

2
(a⊥

q )2 + q2

2
(b⊥

q )2 + V (ψ0).

APPENDIX C: DERIVATION OF THE CP1 MODEL FROM
FRACTIONALIZATION OF PDW

In this Appendix we derive the effective action due to
the fractionalization of the preformed PDW order and show
its similarity with the CP1 model. The action governing the
gradients of the PDW field �PDW is given, in the absence of
EM field, as

S =
∫

dd x ∂μ�∗
PDW∂μ�PDW. (C1)

1. Proof with �PDW = �i jχ
∗
i j

We fractionalize the �PDW field into p-p and p-h pairs as

�PDW = �i jχ
∗
i j ≡ z1z∗

2, (C2)

with

z1 ≡ �i j and z2 ≡ χi j .

Using the constraint |z1|2 + |z2|2 = 1 and substituting
Eq. (C2) in Eq. (C1), we get

S =
∫

dd x

[
2∑

a=1

∂μz∗
a∂μza

− (z1∂μz∗
1 − z∗

2∂μz2)(z∗
1∂μz1 − z2∂μz∗

2 )

]
. (C3)

Lets consider the gauge fields

αμ = −i(z1∂μz∗
1 − z∗

2∂μz2),

αμ = i(z∗
1∂μz1 − z2∂μz∗

2 ).

Then Eq. (C3) can be recast into

S =
∫

dd x
2∑

a=1

∣∣Da
μza

∣∣2,
D1

μ = ∂μ + iαμ, (C4)

D2
μ = D

1
μ = ∂μ − iαμ.

In order to connect this action with a CP1 model, we
choose a spinor

ψ =
(

z∗
1

z2

)
, (C5)

and write down the corresponding action in the form of a CP1

model

Sa =
∫

dd x|Dμψ |2, (C6)

with
Dμ = ∂μ − iτ3αμ and ψ†ψ = 1, (C7)
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where the gauge field αμ corresponding to the relative phase
of the spinor in Eq. (C5) is defined by the condition ∂Sa/∂α =
0. This gives

αμ = −iψ†τ3∂μψ. (C8)

Putting the value of αμ from Eq. (C8) in Eq. (C6) and using
the form of the spinor in Eq. (C5), we can write the action as

S =
∫

dd x

[
2∑

a=1

∂μz∗
a∂μza − ᾱμαμ

]
, (C9)

where
αμ = −i(z1∂μz∗

1 − z∗
2∂μz2). (C10)

This CP1 model is same as the action in Eq. (C3) obtained by
fractionalizing the PDW field. Due to the fractionalization of
the PDW field defined in Eq. (C2), the CP1 model involves
the gauge field corresponding to the relative phase of spinor
in Eq. (C5) or equivalently the global phase of the spinor ψ =
(�i j, χi j )T .

If we parametrize z1 and z2 in terms of the relative and the
global phases as

z1 = |z1|ei(θ+ϕ), z2 = |z2|ei(θ−ϕ), (C11)

we can rewrite the CP1 model in Eq. (C9) as

S =
∫

dd x[4|z1|2|z2|2(∂μϕ)2 + |z2|2(∂μ|z1|)2

+ |z1|2(∂μ|z2|)2 + 2|z1||z2|(∂μ|z1|)(∂μ|z2|)]. (C12)

The effective action depends only on the fluctuations of the
relative phase ϕ, the amplitude fluctuations, and is indepen-
dent of the global phase θ . The form of the action is similar to
the action used in Eq. (18) but with renormalized coefficients
in the amplitude fluctuation terms.

2. Proof with �̃PDW = �i jχi j

In principle, we could have also fractionalized a PDW field
with the definition

�̃PDW = �i jχi j ≡ z1z2. (C13)

The action governing the gradients of this PDW will be

S =
∫

dd x ∂μ�̃∗
PDW∂μ�̃PDW. (C14)

Again using the constraint |z1|2 + |z2|2 = 1 and substituting
Eq. (C13) in Eq. (C14), we get

S =
∫

dd x

[
2∑

a=1

∂μz∗
a∂μza

− (z1∂μz∗
1 − z2∂μz∗

2 )(z∗
1∂μz1 − z∗

2∂μz2)

]
. (C15)

As previously, let us consider the gauge fields

αμ = −i(z∗
1∂μz1 − z∗

2∂μz2),

αμ = i(z1∂μz∗
1 − z2∂μz∗

2 ).

Equation (C3) can then be recast into

S =
∫

dd x
2∑

a=1

∣∣Da
μza

∣∣2,
D1

μ = ∂μ + iαμ, (C16)

D2
μ = ∂μ − iαμ.

With a choice of a spinor

ψ =
(

z∗
1

z∗
2

)
, (C17)

the action Eq. (C16) in the form of a CP1 model is the same
as previously Eq. (C6), with

Sa =
∫

dd x|Dμψ |2, (C18)

with
Dμ = ∂μ − iτ3αμ and ψ†ψ = 1, (C19)

where the gauge field αμ corresponding to the relative phase
of the spinor in Eq. (C17) is defined by the condition
∂Sa/∂α = 0. This gives

αμ = −iψ†τ3∂μψ

= −i(z1∂μz∗
1 − z2∂μz∗

2 ). (C20)

Using the parametrization as in Eq. (C11), the effective
action can be written as

S =
∫

dd x[4|z1|2|z2|2(∂μθ )2 + |z2|2(∂μ|z1|)2

+ |z1|2(∂μ|z2|)2 + 2|z1||z2|(∂μ|z1|)(∂μ|z2|)]. (C21)

Thus, fractionalizing the PDW of the form given in Eq. (C13),
we obtain an effective action with fluctuating global phase. So,
fractionalizing the PDW field as in Eq. (C13) would result in
freezing of the relative phase ϕ at T ∗ and the effective action
in the PG phase involves only the fluctuation of the global
phase.

APPENDIX D: THE CHIRAL SU(n + 1) MODEL

1. CPn representation of a chiral SU(n + 1) model

In this Appendix we give the details of the CPn repre-
sentation of a chiral SU(n + 1) model for a generic n. Let
us consider the SU(n + 1) invariant chiral model [118]. A
generic field ϕ belonging to the Lie algebra of the group
SU(n + 1) can be cast into the form

ϕab = δab

n + 1
− zaz∗

b, (D1)

where za is a set of n + 1 complex numbers verifying the
constraint

n+1∑
a=1

z∗
aza = 1. (D2)

The action for this model is

S = 1

2

∫
dd xTr[∂μϕ†∂μϕ], (D3)
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which using the constraint can be put into the form (a =
1 · · · n + 1)

S =
∫

dd x

⎡
⎣∑

a

∂μz∗
a∂μza −

∑
a,b

(z∗
a∂μza)(zb∂μz∗

b )

⎤
⎦. (D4)

Equation (D3) can be recast to the action

Sa =
∫

dd x|Dμz|2, (D5)

with

n+1∑
a=1

|za|2 = 1,

Dμ = ∂μ − iaμ,

and

aμ = −i
∑

a

z∗
a∂μza,

where z is a shorthand notation for the multiplet
z = (z1,z2, . . . , zn+1), Dμ = ∂μ − iaμ, and aμ =
−i/2

∑
a (z∗

a∂μza − za∂μz∗
a ) = −i

∑
a z∗

a∂μza. One can
convince oneself of this equivalence by solving for the
mean value of the gauge field δSa/δaμ = 0 which leads
to the definition of the gauge field aμ in Eq. (D5), and
then reporting it into Sa in Eq. (D5) leads to Eq. (D4). The
model defined in Eq. (D5) is called the CPn model. It is
remarkable that it is invariant under the gauge transformation
za → eiθ za, aμ → aμ + ∂μθ . The gauge structure enforced
by the gauge field aμ reflects the topological character of
the CPn model, with π2(CPn) = Z . Said in simpler words,
n + 1 complex fields verifying the constraint Eq. (D2) are not
purely independent, but lead to a field theory of n independent
fluctuating fields subjected to the action Eq. (D5).

For the specific case of SU(2), the CP1 model is equivalent
to the O(3) NLσM. To see this, it is convenient to take a
representation of the fields in terms of Pauli matrices

ma = z∗
ασ a

αβzβ, a = 1, 3, (D6)

which satisfies the constraint

3∑
a=1

|ma|2 = 1. (D7)

The corresponding action reads

S = 1/2
∫

dd x
3∑

a=1

(∂μma)2. (D8)

The action Eq. (D8) is typical of an O(3) NLσM. This
equivalence between CP1 ∼ O(3) NLσM is not generically
valid for all n. In particular, the O(n + 1) NLσM does not
have topological defects for n � 3 since π2(Sn) = 0 for n � 3,
whereas the CPn model does with π2(CPn) = Z for all n. The

topological charge can be written as [118]

Q =
∫

d2xεμν (∂μz∗∂νz)

=
∫

d2x
∑

a

εμν (∂μz∗
a∂νza), (D9)

where εμν is the totally antisymmetric tensor. In terms of the
gauge field the topological charge writes

Q = 1

2π

∫
d2xεμν∂μaν . (D10)

2. Explicit forms of the SU(n + 1) → CPn mapping

a. The case with two fields: SU (2) → CP1

In the case for example where the d-BDW order has only
one wave vector, two fields z1 and z2 form the spinor ψ in
Eq. (1). We take the form of the spinor in Eq. (17) and assume
that we are below T ∗ so that the phase θ is frozen. Since the
upper energy scale is E∗ = |ψ0|, the constraint in Eq. (D2)
writes

2∑
a=1

z∗
aza = |ψ0|2. (D11)

From Eqs. (D4) and (8) we see that the SU(2) chiral model
can be written as

S =
∫

d2x

[∑
a

∂μz∗
a∂μza − āμaμ|ψ0|2

]
, (D12)

with

aμ = −i

2|ψ0|2
∑

a

(z∗
a∂μza − za∂μz∗

a ).

Reporting the explicit form of the spinor in term of the phase
ϕ leads to

S =
∫

d2x|ψ0|2(∂μϕ)2 + |∂μψ0|2 − (ψ†τ3ψ )2

|ψ0|2 (∂μϕ)2,

(D13)

which finally gives after a recombination of terms

S =
∫

d2x
4|z1|2|z2|2

n+
s

(∂μϕ)2 + (∂μ|z1|)2 + (∂μ|z2|)2, (D14)

where the standard notations n+
s = |ψ0|2 = |z1|2 + |z2|2 have

been used. We see that Eq. (D14) is identical to Eqs. (18)
and (B10) which makes the point that the chiral model de-
scribes the fluctuations below T ∗.

b. The case for three fields: SU (3) → CP2

In the case, for example, where the d-BDW has two wave
vectors Qx and Qy, which is the most typical case for cuprates,
we have three fields z1, z2, and z3 which form the spinor

ψ† = (z∗
1, z∗

2, z∗
3 ), ψ =

⎛
⎝z1

z2

z3

⎞
⎠. (D15)
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We take the following parametrization of ψ with

ψ = eiθ eiδ̂2ϕ2 eiδ̂3ϕ3ψ0, (D16)

with

δ̂2 =
⎛
⎝1

−1
1

⎞
⎠,

and

δ̂3 =
⎛
⎝1

1
−1

⎞
⎠,

and where ψ0 is parametrized as in Eq. (17). We now expand
the action Eq. (D4) in this basis, assuming that the phase θ is
frozen at T ∗ and that as in Appendix D 2 a, the constraint in
Eq. (D11) is extended as

∑3
a=1 z∗

aza = |ψ0|2. We get

S =
∫

d2x

[
|∂μψ0|2 +

(
|ψ0|2 − (ψ†δ̂2ψ )2

|ψ0|2
)

(∂μϕ2)2

+
(

|ψ0|2 − (ψ†δ̂3ψ )2

|ψ0|2
)

(∂μϕ3)2

+ 2

(
ψ†δ̂2δ̂3ψ − (ψ†δ̂2ψ )(ψ†δ̂3ψ )

|ψ0|2
)

(∂μϕ2)(∂μϕ3)

]
.

(D17)

Reducing in terms of the components of the fields yields

S =
∫

d2x

[
4(|z1|2 + |z3|2)|z2|2

|ψ0|2 (∂μϕ2)2

+ 4(|z1|2 + |z2|2)|z3|2
|ψ0|2 (∂μϕ3)2

− 4|z2|2|z3|2
|ψ0|2 (∂μϕ2)(∂μϕ3) +

3∑
a=1

(∂μ|za|)2

]
. (D18)

APPENDIX E: PDW (η) FLUCTUATIONS BELOW T ∗:
OPERATOR FORMALISM

As already highlighted in Sec. II D and detailed in Ap-
pendix B 2 b, the fluctuations in the PG phase can be described
by an SU(2) chiral model. In this Appendix we will show that
the fluctuations will take the form of PDW operators when
the fields forming the spinor are written in terms of electronic
operators. We also compare the structure of fluctuations in
the SU(2) chiral model with earlier works related to the
idea of SU(2) emergent symmetry (see, e.g., Ref. [111]). We
further construct an effective quantum rotor model within the
operator formalism.

1. The SU(2) chiral model

In order to obtain the form of the SU(2) fluctuations
[Eq. (19) in the case of cuprate superconductors, it is worth
going back to the chiral model in Eq. (D3) and make the

following identifications. In the operator formalism we define

z1 → �̂i j ≡ d̂
∑

σ

σc j−σ ciσ e−iθ�,

z2 → χ̂i j ≡ d̂
∑

σ

c†
iσ c jσ eiQ·r+iθχ ,

(E1)
z1 → �̂

†
i j ≡ d̂

∑
σ

σc†
iσ c†

j−σ eiθ�,

z2 → χ̂
†
i j ≡ d̂

∑
σ

c†
jσ ciσ e−iQ·r−iθχ ,

with r = (ri + r j )/2 the bond midpoint. We can now write the
commutators (using d̂2 = 1)

1

2
[z1, z1] = −1

2
(n̂i + n̂ j ) + 1 ≡ −η̂z,

1

2
[z2, z2] = 1

2
(n̂i − n̂ j ) ≡ η̂0, (E2)

1

2
[z1, z2] = −1

2

∑
σ

σe−iQ·r−i(θ�+θχ )ci−σ ciσ ≡ η̂i,Q,

1

2
[z1, z2] = −1

2

∑
σ

σeiQ·r−i(θ�−θχ )c j−σ c jσ ≡ η̂ j,−Q,

where n̂i = ∑
σ c†

iσ ciσ . With the help of the PDW operators in
Eqs. (E2) one can form the raising and lowering operators as

η̂+ = 1√
AB

(Aη̂
†
i,Q + Bη̂

†
j,−Q),

η̂− = 1√
AB

(Bη̂i,Q + Aη̂ j,−Q). (E3)

At first look it sounds that we have six generators η̂z, η̂0,
η̂i,Q, η̂ j,−Q, η̂

†
i,Q, η̂

†
j,−Q, but they are not independent. We have

two copies of the SU(2) field theory corresponding to two
choices of the spinors. In the following two subsections, we
give the choices of the spinors and identify the corresponding
fluctuations.

a. ψ = ( z1
z2

)

It is the form of the spinor that we chose to start with,
the generic fields in Eq. (D1) that constitute the chiral SU(2)
model are given in a matrix form [using expressions in
Eqs. (E2),

ϕ̂ =
(−η̂z η̂i,Q

η̂
†
i,Q η̂0

)
, (E4)

where we have used ϕab = 1
2 [za, zb].

We can now write the first copy of the O(3) NLσM in
Eq. (19), with the identification

m̂z ≡ 1
4σ z

ab[za, zb] = 1
2 (−η̂z − η̂0) = 1

2 (1 − n̂i ),

m̂+ ≡ 1
2σ+

ab[za, zb] = η̂i,Q, (E5)

m̂− ≡ 1
2σ−

ab[za, zb] = η̂
†
i,Q,

and the constraint

|m̂z|2 + m̂+m̂− + m̂−m̂+ = 1. (E6)

We note that the SU(2) algebra formed by the operators
Eq. (E5) is self-adjoint: namely the l = 1 representation
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associated with it is itself. With the notation

�̂1 = −1√
2

m̂+,

�̂0 = m̂z,

�̂−1 = 1√
2

m̂−,

we get

[m̂±, �̂m] =
√

l (l + 1) − m(m ± 1)�̂m±1,

[m̂z, �̂m] = m�̂m. (E7)

The form of the fluctuations coming from the chiral model
Eq. (D4) and corresponding to the O(3)NLσM Eq. (D8)
thus consists of three types of η fields forming an SU(2)
algebra acting on the η fields themselves. With the appropriate
rotation of the basis

n̂1 = 1

2
(�̂1 + �̂−1),

n̂2 = �̂0, (E8)

n̂3 = −i

2
(�̂1 − �̂−1),

the Lie algebra writes

L̂ =
⎡
⎣ 0 ∗ ∗

−i m̂+−m̂−
2 0 ∗

−m̂z m̂++m̂−
2 0

⎤
⎦. (E9)

b. ψ2 = ( z1
z2

)

We could have chosen a second form for the spinor, the
generic fields in Eq. (D1) that constitute the chiral SU(2)
model are given in a matrix form [using expressions in
Eqs. (E2)

ϕ̂2 =
( −η̂z η̂ j,−Q

η̂
†
j,−Q −η̂0

)
. (E10)

We can now write the second copy of the O(3) NLσM in
Eq. (19), with the identification

m̂z
2 ≡ 1

4σ z
ab[za, zb] = 1

2 (−η̂z + η̂0) = 1
2 (1 − n̂ j ),

m̂+
2 ≡ 1

2σ+
ab[za, zb] = η̂ j,−Q, (E11)

m̂−
2 ≡ 1

2σ−
ab[za, zb] = η̂

†
j,−Q,

and the constraint is unchanged. As for Eq. (E5) the algebra
of Eq. (E11) is self-adjoint.

It is interesting to note that the first copy of the O(3)
NLσM corresponds to fluctuations living on site i of the bond
〈i j〉 and the second copy lives on site j. Thus, by constructing
the preformed pairs on bonds with the definition of the fields
given in Eq. (E1), we have duplicated O(3) NLσM into
two copies living on different sites of a bond. The angular
fluctuations are given by m̂± which correspond to PDW fields.
On the other hand, m̂z correspond to the fluctuations in the
density. At T ∗, if we freeze the global phase by choosing the
spinor as in first copy ψ , the PDW operators corresponding
to the second copy acquires phase coherence as they involve
global phase. So, the special Higgs mechanism at T ∗ restricts
the fluctuation space to only one copy of O(3)NLσM.

2. SU(2) emergent symmetry

After showing that the fluctuations in SU(2) chiral model
are governed by the PDW operators, we now review the
framework of SU(2) emergent symmetry and give the set of
SU(2) operators, which rotates a particle-particle pairing field
on a lattice bond, to a particle-hole pairing field sitting as well
on a bond. We show that these operators resemble the form of
a PDW operator.

We work in real space and introduce the following l = 1
representation of the SU(2) algebra in terms of the operators
�̂−1 = 1/

√
2�̂i j , �̂1 = −1/

√
2�̂

†
i j , and �̂0, a linear combi-

nation of χ̂i j and χ̂
†
i j :

�̂1 = −1√
2

d̂
∑

σ

σc†
iσ c†

j−σ eiθ�,

�̂0 = 1

2
√

AB
d̂
∑

σ

[
Ac†

iσ c jσ eiQ·(ri+r j )/2eiθχ

(E12)
+ Bc†

j−σ ci−σ e−iQ·(ri+r j )/2e−iθχ
]
,

�̂−1 = 1√
2

d̂
∑

σ

σc j−σ ciσ e−iθ�,

where A and B are generic complex numbers, θ� and θχ are
phases. �̂−1 and �̂1 = −�̂

†
−1 are proportional to the d-SC

field and its conjugate, whereas �̂0 is a modulated bond
particle-hole operator. The phases of the various operators are
independent from each other. The representation in Eq. (E12)
has a large degree of generality. It supports a complex bond-
excitonic field χ̂ carrying both an amplitude and a phase, thus
able to host d-currentDW as well as d-CDW. The modulation
vector Q does not need to be commensurate with the lattice.
The SU(2) ladder pseudospin operators are defined in the
following way:

η̂+ = 1

2
√

AB

∑
σ

σ
[
Ac†

iσ c†
i−σ eiQ·(ri+r j )/2ei(θ�+θχ )

+ Bc†
jσ c†

j−σ e−iQ·(ri+r j )/2ei(θ�−θχ )],
η̂− = 1

2
√

AB

∑
σ

σ
[
Bci−σ ciσ e−iQ·(ri+r j )/2e−i(θ�+θχ )

(E13)
+ Acj−σ c jσ eiQ·(ri+r j )/2e−i(θ�−θχ )

]
,

η̂z = 1

2
[η̂+, η̂−]

= 1

2

∑
σ

(n̂iσ + n̂ jσ − 1),

where n̂iσ = c†
iσ ciσ . With these definitions, the three η opera-

tors form a closed SU(2) algebra

[η̂z, η̂±] = ±η̂±,

[η̂+, η̂−] = 2η̂z, (E14)

[η̂2, η̂a] = 0 with a = (+,−, z),

where η̂2 ≡ η̂+η̂− + η̂2
z − η̂z is the Casimir operator commut-

ing with all the generators. The �̂m operators then form a
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l = 1 representation under this algebra, satisfying the com-
mutation relations:

[η̂±, �̂m] =
√

l (l + 1) − m(m ± 1)�̂m±1,

[η̂z, �̂m] = m�̂m,

[η̂2, �̂m] = l (l + 1)�̂m. (E15)

The operators (η̂+, η̂−) have the form of a particle-particle
pairing order with finite center of mass momentum (which is
equal to the modulation wave vector of the d-BDW) and thus
define a PDW operator.

In writing the l = 1 representation in Eq. (E12), we have
considered both the d-SC and the d-BDW fields to be com-
plex. This is necessary for the Hopf fibration discussed in
Sec. II B. On the contrary, the case of emergent SU(2) sym-
metries works well with a purely real d-BDW or a purely
imaginary d-BDW. While Eqs. (E12) and (E13) are com-
pletely generic, in the following we show two special l = 1
representations corresponding to A = B = 1 and A = −B = i.

a. For A = B = 1

�̂1 = −1√
2

d̂
∑

σ

σc†
iσ c†

j−σ eiθ�,

�̂a
0 = 1

2
d̂
∑

σ

[
c†

iσ c jσ eiQ·(ri+r j )/2eiθχ

+ c†
jσ ciσ e−iQ·(ri+r j )/2e−iθχ

]
,

�̂−1 = 1√
2

d̂
∑

σ

σc j−σ ciσ e−iθ� . (E16)

Note that in this case �̂a
0 corresponds to the real part of the

excitonic order �̂a
0 = χ̂ + χ̂†, i.e., to the charge modulations.

We can construct the PDW operators

η̂a
+ = 1

2

∑
σ

σ
[
c†

iσ c†
i−σ eiQ·(ri+r j )/2ei(θ�+θχ )

+ c†
jσ c†

j−σ e−iQ·(ri+r j )/2ei(θ�−θχ )
]
,

η̂a
− = 1

2

∑
σ

σ
[
ci−σ ciσ e−iQ·(ri+r j )/2e−i(θ�+θχ )

+ c j−σ c jσ eiQ·(ri+r j )/2e−i(θ�−θχ )
]
,

η̂z = 1

2
[η̂+, η̂−]

= 1

2

∑
σ

(n̂iσ + n̂ jσ − 1), (E17)

and

[η̂±, �̂m] =
√

l (l + 1) − m(m ± 1)�̂m±1,

[η̂z, �̂m] = m�̂m. (E18)

Note that in all cases η̂z is real, with η̂†
z = η̂z. In this case we

have η̂+ = η̂
†
− (the subscript (∗)a,b has been dropped in the

commutation relations for clarity).

b. For A = −i and B = i

�̂1 = −1√
2

d̂
∑

σ

σc†
iσ c†

j−σ eiθ�,

�̂b
0 = i

2
d̂
∑

σ

[− c†
iσ c jσ eiQ·(ri+r j )/2eiθχ

+ c†
jσ ciσ e−iQ·(ri+r j )/2e−iθχ

]
,

�̂−1 = 1√
2

d̂
∑

σ

σc j−σ ciσ e−iθ� . (E19)

Note that in this case �̂b
0 corresponds to the imaginary part

of the excitonic order �̂b
0 = −iχ̂ + iχ̂∗, i.e., to the current

modulations. We can construct the PDW operators

η̂b
+ = i

2

∑
σ

σ
[− c†

iσ c†
i−σ eiQ·(ri+r j )/2ei(θ�+θχ )

+ c†
jσ c†

j−σ e−iQ·(ri+r j )/2ei(θ�−θχ )],
η̂b

− = −i

2

∑
σ

σ
[
ci−σ ciσ e−iQ·(ri+r j )/2e−i(θ�+θχ )

− c j−σ c jσ eiQ·(ri+r j )/2e−i(θ�−θχ )
]
,

η̂z = 1

2
[η̂+, η̂−]

= 1

2

∑
σ

(n̂iσ + n̂ jσ − 1). (E20)

As above, η̂z is real, with η̂†
z = η̂z and η̂+ = −η̂

†
−.

3. Lie algebra and quantum rotor model

In the operator formalism, it is interesting to reformulate
the discussion on fluctuations with the help of Lie algebra. For
this we introduce a basis of a four-vector n = (n1, n2, n3, n4)
such that

n1 = 1

2
(�̂ + �̂†),

n2 = 1

2
(χ̂ + χ̂†),

(E21)

n3 = −i

2
(�̂† − �̂),

n4 = −i

2
(χ̂† − χ̂ ).

Using the definitions of η̂a
± in Eq. (E17) and η̂b

± in
Eq. (E20), we can form the SO(4) Lie algebra with the
antisymmetric operator L̂ such that Lab = −Lba,

L̂ =

⎡
⎢⎢⎢⎣

0 ∗ ∗ ∗
−i η̂a

+−η̂a
−

2 0 ∗ ∗
−η̂z

η̂a
++η̂a

−
2 0 ∗

i η̂b
+−η̂b

−
2 η̂0 − η̂b

++η̂b
−

2 0

⎤
⎥⎥⎥⎦, (E22)

where ∗ means the antisymmetric component of Lab. The basis
works for general groups SO(n) with n vectors na and the
constraint

∑
a n2

a = 1 is implicit. Here we have SO(4), which
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has six such components. One can check the relations—valid
as well for the SO(n) algebra,

[Lab, nc] = iδacnb − iδbcna,

[Lab, Lcd ] = iδad Lcb + iδacLbd + iδbcLda + iδbd Lac. (E23)

We can form the Hamiltonian

Ĥ = 1

2ζ
L̂2 + ρ

2
v̂2 + U (n), (E24)

where ζ is a susceptibility, ρ is the stiffness, v̂ab = na∇nb −
nb∇na, and U (n) is a potential term. We can take formally the
Legendre transform by introducing the conjugate momentum
to the quantum rotor L̂,

ω̂ = ∂Ĥ

∂L̂
= L̂

ζ
. (E25)

The corresponding Lagrangian thus writes

L = ζ

2
ω̂2 − ρ

2
v̂2 − U (n). (E26)

The form of the momentum ω̂ can be obtained by taking
the operator representation for L̂ with

Lab = n̂a p̂b − p̂an̂b, (E27)

with p̂ the momentum conjugate to n̂, with [ p̂a, n̂b] = iδab.
Using the Hamilton equation ṅa = ∂H/∂ pa, and making use
of the constraint

∑
a n2

a = 1, we get the following expression:

ωab = naṅb − nbṅa. (E28)

Noticing that by differentiating the constraint, one has the
relation

∑
a naṅa = 0, one obtains

∑
a,b ω2

ab = ∑
a ṅ2

a, thus
the Lagrangian in Eq. (E26) can be cast into the form

L =
4∑

a=1

ζ

2
ṅ2

a − ρ

2
(∇na)2 − U (n),

with

4∑
a=1

n2
a = 1. (E29)

Equation (E29) is typical of the SO(4) NLσM. As men-
tioned before, since in the model invoked for cuprates, the
form of L̂ in Eq. (E22) involves only η operators, one can
conclude that the fluctuations below T ∗ are made of PDW
modes.

The L̂ matrix in Eq. (E22) can be constructed by the
generators of the two copies of the chiral SU(2) model of
Appendix E 1. The SO(4) group has six generators and the
two copies of SU(2) also consists of 3 + 3 = 6 generators. In
order to see this analogy, we write the antisymmetric operator
L̂ in terms of the m field operators in Eqs. (E5) and (E11),

L̂ =

⎡
⎢⎢⎢⎣

0 ∗ ∗ ∗
−m̂y − m̂y

2 0 ∗ ∗
m̂z + m̂z

2 m̂x + m̂x
2 0 ∗

m̂x − m̂x
2 m̂z

2 − m̂z m̂y − m̂y
2 0

⎤
⎥⎥⎥⎦, (E30)

where ∗ means the antisymmetric component of Lab (with
Lba = −Lab for a, b ∈ [1, 2, 3, 4]) and

m̂x = 1

2
(m̂+ + m̂−), m̂y = 1

2i
(m̂+ − m̂−),

m̂x
2 = 1

2
(m̂+

2 + m̂−
2 ), m̂y

2 = 1

2i
(m̂+

2 − m̂−
2 ), (E31)

with m̂±, m̂z defined in Eqs. (E5) and m̂±
2 , m̂z

2 defined in
Eqs. (E11). m̂x, m̂y, m̂z are the generators of the first chiral
SU(2) copy in Appendix E 1 a and m̂x

2, m̂y
2, m̂z

2 are the genera-
tors of the second chiral SU(2) copy in Appendix E 1 b.

APPENDIX F: DETAILS OF THE MICROSCOPIC MODEL

1. Solving the gap equations

We explicit here the solution of the two gap equations given
in Eqs. (46) and (47).

�k,ω = −T
∑
q,ω′

J−(q, ω′)�k+q

(ω + ω′)2 − ξ 2
k+q − �2

k+q

,

χk,ω = −T
∑
q,ω′

J+(q, ω′)χk+q

(ω + ω′ − ξk+q)(ω + ω′ − ξk+Q+q ) − χ2
k+q

.

(F1)

We start by assuming J±, �k,ω, and χk,ω to be frequency
independent. We also take the interaction to be maximal for
q = QAF. An example is to take J±(q) to be of the form

J±(q) = J±
(q − QAF)2 + κ2

AF

, (F2)

where the constant part J± = 3J (p) ± V is related to the orig-
inal parameter of the real space model and κAF is a mass that
translate the short-range nature of the fluctuations. We use the
fact that J± is peaked around the antiferromagnetic wave vec-
tor to restrict the momentum sum in Eq. (F1) to a small region
around QAF of size κAF in which J±, �, and χ are taken to be
constant. In order not to make any assumption on the relation
between χk+QAF and χk or �k+QAF and �k we use Eq. (F1) to
express χk+QAF and �k+QAF , respectively, leading to

χk = (J+)2
∑
q,ω′

1

(ω + ω′ − ξ̃k+Q+q )(ω + ω′ − ξ̃k+q) − (χ̃k )2

×
∑
q′,ω′

χk

(ω + ω′ − ξk+Q+q′ )(ω + ω′ − ξk+q′ ) − (χk )2
,

(F3)

�k = (J−)2
∑
q,ω′

1

(ω + ω′ − ξ̃k+q)(ω + ω′ + ξ̃−k−q ) − (�̃k )2

×
∑
q′,ω′

�k

(ω + ω′ − ξk+q′ )(ω + ω′ + ξ−k−q′ ) − (�k )2
,

(F4)

where we used the notation ξ̃k = ξk+QAF , χ̃k = χk+QAF , and
�̃k = �k+QAF . We can now simplify the equations on both
side and perform analytically the two summations over the
Matsubara frequencies which leads to the same result starting
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from either Eq. (F3) or (F4):

1 = (J±)2
∑

q

n f (ω̃+) − n f (ω̃−)

ω̃+ − ω̃−

∑
q′

n f (ω+) − n f (ω−)

ω+ − ω−
,

(F5)
with

ω
χ
± = 1

2

(
ξk+q + ξk+Q+q ±

√
(ξk+Q+q − ξk+q)2 + 4χ2

k

)
,

(F6)

ω�
± = ±

√
ξ 2

k+q + �2
k, (F7)

and ω̃ have the same expression with all momenta shifted
by QAF, i.e., k → k + QAF. Neglecting the q dependence
of (ω+ − ω−) in Eq. (F5) we can also perform analytically
the momentum summation. This is done by linearization of
ω± around k and by limiting the integration to the direction
parallel to the Fermi velocity in a range κAF,

∑
q

→
∫

dqn

(2π )n =
∫ κAF/2

−κAF/2

dq||
2π

. (F8)

This leads us to the following expression:

∑
q

n f (ω) = − 1

βv f
log

1 + eβ(ω+v f κAF/2)

1 + eβ(ω−v f κAF/2) . (F9)

Finally we start by neglecting χ̃ and �̃ so that we can solve
the implicit equations:

4 χ2
k = (J+)4

(
�n f (ω̃+,ω̃− )

ξ̃k+Q−ξ̃k

)2
�n f (ω+, ω−)2 − (ξk+Q − ξk )2,

(F10)

�2
k = (J−)4

4

(
�n f (ω̃+, ω̃−)

2ξ̃k

)2

�n f (ω+, ω−)2 − ξ 2
k . (F11)

Note that the right-hand sides still depend on χk or �k

through ω± in Eq. (F6). However, these equations can be solve
independently for all k in the first Brillouin zone. As a second
step, we use the previous solution as the input value of χ̃k

and �̃k and compute the modification it implies on χ and
�, respectively. This procedure converge to a stable solution
within a few iterations. Having used the same set of approx-
imations for the computation of the particle-particle gap and
the particle-hole gap, allows us to have a direct comparison of
their amplitudes. We finally consider that only one gap open
at each k point, the one that is the larger of the two.

2. Exploration of the parameter space

The solution of the gap equation depends on the choice
of different parameters, namely the spin-spin interaction J ,
the density-density interaction V , the d-BDW ordering wave
vector Q, and the range of the AF coupling κAF. We present in
Fig. 6 the solutions for certain choices of parameters. We start
by two results obtained from the same value of interactions
as in the main text (Fig. 4) but with larger and smaller value
of κAF than the one obtained from experiments. As expected,
the resulting solutions are limited to a region closer to the

FIG. 6. (a), (c), (e), and (g) Gap in the particle-hole pairing
channel (χ ) for different choices of parameters. (b), (d), (f), and
(h) Corresponding gaps in the particle-particle pairing channel (�).
For all figures J = 0.6 eV, V = J/3. We compare the gaps with
κAF = 0.05 r.l.u. [(a) and (b)] and κAF = 0.16 r.l.u. [(c) and (d)]
for χ with an axial Q. We also show solutions for � and χ with
κAF = 0.1 r.l.u. and Q = (0, ±0.3) r.l.u. [(e) and (f)] which is close
to the experimentally observed value. Solutions of χ with diagonal
wave-vector linking hot spots Q = (±Qx, ±Qy ) for κAF = 0.1 r.l.u.
is shown in (g) with its equivalent comparison for � in (h).

hot spots when κAF is reduced while we obtain a nonzero
solution in an extended part of the Brillouin zone for large
κAF. Solutions obtained when we change the d-BDW ordering
wave vector show that the gap opening on the Fermi surface
is the largest with an axial wave vector connecting the hot
spots in the first Brillouin zone and hence will be favored. The
diagonal wave vector for d-BDW leads to a solution which
is degenerate with the superconducting gap or with the axial
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FIG. 7. PDW gap averaged in the nodal region (�Q
n ) scaled by

χQhs
n as a function of Q/Qhs. �Qhs/2

n /χQhs
n is nearly 0.5. Thus the

Qhs d-BDW order is energetically favored compared to the Qhs/2
PDW as a choice for a primary state. The parameters for the short
AF interactions are chosen as κAF = 0.05 r.l.u. and J = 0.5 eV. We
used the same doping p = 0.12, inverse temperature β = 50, and
ratio J/V = 20 as in Fig. 4.

d-BDW at the hot spots but will have a larger overlap with the
d-SC gap away from them.

3. Mean-field solution for PDW gap

We now look for finite momentum superconducting order
arising from the microscopic model in Eq. (42) at the mean-
field level. The gap equation for the PDW gap (�Q) is given
by

�
Q
k,ω

=−T
∑
q,ω′

J−(q, ω′)�Q
k+q

(ω + ω′ − ξk+q)(ω + ω′ + ξk+Q+q ) − (�Q
k+q

)2 .

(F12)

We solve this equation in the same way as described previ-
ously in Appendix F 1 for a modulation wave vector varying
between Q = 0 and Q = Qhs. Qhs is the axial wave vector
relating two hot spots in the first Brillouin zone. We then
compare the solution with the d-BDW gap with wave-vector
Q = Qhs as obtained in the main text. The result for the values
averaged in the nodal region is shown in Fig. 7. We first note
that �Q=0

n (d-SC gap) is slightly smaller than χQhs
n as we have

the density-density interaction included in our model. We see

that the PDW gap for Q = Qhs/2 is approximately half of the
d-BDW gap with Q = Qhs in the nodal region. We checked
that the PDW gap with Q = Qhs/2 averaged in the AN region
(�Qhs/2

an ) also gives �
Qhs/2
an ≈ 1/2χQhs

n . Thus energetically, the
choice of the d-BDW with Qhs as a primary state over Qhs/2
PDW is justified.

APPENDIX G: DETERMINATION OF THE PHASE
OF THE DENSITY MODULATIONS IN STM

We outline the procedure to extract the phase of the
charge density modulations in STM measurements. The sub-
lattice segregation method described in Ref. [119] gener-
ates D̃δZ (q, E ), which measures the spectral weight of the
field induced d-CDW at an energy E = eV (V is the bias
voltage). Note that δZ (r, E ) = Z (r, E , 8.5T ) − Z (r, E , 0T )
with Z (r, E ) = g(r,V )/g(r,−V ) where g is the differential
tunneling conductance. We hypothesize that D̃δZ is propor-
tional to the amplitude of the d-CDW [Re(χ (r))]. The phase
is obtained using the following procedure:

(1) D̃δZ (q, E ) is filtered individually around Qx =
(0.25, 0)2π/a0 and Qy = (0, 0.25)2π/a0 with a filter of
width � to obtain

D̃x,y(q, E ) = 2D̃δZ (q, E )e− (q−Qx,y )2

2�2 . (G1)

(2) An inverse Fourier transform of D̃x,y(q) gives

Dx,y(r) = ReDx,y(r) + iImDx,y(r)

= 1

2π2

∫
dqeiq·rD̃x,y(q). (G2)

Since D̃x,y(q) is not a perfect Gaussian, the real space struc-
ture Dx,y(r) contains information about both spatially varying
phase and amplitude.

(3) The spatial-phase map is generated using

φx,y(r) = tan−1[ImDx,y(r)/ReDx,y(r)]. (G3)

(4) In Fig. 5(a) we plot Cos(φx,y(r)) masked around the
vortex regions.

(5) A reference modulation is constructed with
Cos(φref(r)) where φref(r) = Qy · r + φ0. The gray lines
in Fig. 5(a) represents the points where the reference phase
function is 0 mod 2π .

(6) The histogram of φy(r) − φref (r) is shown in Fig. 5(b)
at only the vortex regions considering six to nine vortex cores.
A common radius of 2 nm around each vortex core is used.
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