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position of moving eddies on a wide range of scales. The smallest
one is the dissipation length h. In a closed ¯ow, the largest one is
equal to the system size L. We emphasize the difference with open
¯ows where eddies escape through the open boundaries and the
power consumption has gaussian ¯uctuations4. The effective
number of degrees of freedom contributing to the turbulence
motion can be estimated as N � �L=h�3 (ref. 21). Using Kolmogorov
mean-®eld arguments, N can be related to the Reynolds number
through L=h � Re4=3 (ref. 1). Hence any system of ®nite Reynolds
number can be considered as containing a ®nite number of degrees
of freedom. Given that many scales are important, the simplest
scenario is a self-similar one. Indeed, both Kolmogorov's original
hypothesis about the energy cascade and subsequent corrections to
include intermittency effects assume that the energy transfer per
unit mass on scale l, ql, has a scale-invariant behaviour (for example,
hep

l i ~ lp� p�), as con®rmed by experiment1,22. In a closed turbulent
¯ow, the scale invariance holds up to the system size. The experi-
mental evidence presented here suggests that this is suf®cient to
provide a complete analogy with the critical magnetic system and
the same kind of universality for QP(P) as for QM(M).

A consequence of this interpretation is that the ¯uctuations in the
dissipated power can be thought of as a ®nite-size correction to the
result at in®nite Reynolds number. The Re � ` case is by de®nition
inaccessible for any experiment studying turbulence in a closed ¯ow,
as there is a well de®ned upper and lower length scale between which
¯uctuations are important. For very small values of Re, one might
expect to observe transient effects that depend on the details and
dimensions of the experiment, but once some threshold has
been exceeded, QP(P) should be independent of Re, however large
it may be.

As many length scales are important at a critical point, the
microscopic details often get washed away and the critical behaviour
of apparently radically differing systems can be the same. Only large
scale details, such as the symmetry of the hamiltonian and the
dimension, are important, and systems with the same critical
behaviour are grouped together in `universality classes'8. The prob-
ability distribution function for all systems falling in the same
universality class should therefore have the same universal form.
However, there is no a priori reason to expect that the same should
be true in going from one universality class to another. It is therefore
surprising to ®nd that these two functions are so similar. We do not
believe that we have miraculously fallen onto the correct univer-
sality class for the turbulent ¯uid experiment. Rather, it is likely
that, for certain universality classes, the departure from gaussian
behaviour at a critical point is described to an excellent approxima-
tion by the spin-wave limit of the two-dimensional XY model, with
the ®ne details that characterize and separate the universality classes
being concentrated in the central part of the distribution function,
or otherwise being hidden by experimental errors.

Our results indicate that the universality observed in the turbu-
lence experiment can be explained in terms of a self-similar
structure of ¯uctuations, just as in a ®nite critical system. This
analogy provides an important new experimental application of
®nite size scaling approaches to a critical point20 and it suggests a
new range of experiments to characterize turbulent ¯ow. Finally, it
provides a systematic method of predicting the probability of rare
¯uctuations in a con®ned turbulent system. M
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Waves on the surface of a ¯uid provide a powerful tool for
studying the ¯uid itself and the surrounding physical environ-
ment. For example, the wave speed is determined by the force per
unit mass at the surface, and by the depth of the ¯uid1: the
decreasing speed of ocean waves as they approach the shore
reveals the changing depth of the sea and the strength of gravity.
Other examples include propagating waves in neutron-star
oceans2 and on the surface of levitating liquid drops3. Although
gravity is a common restoring force, others exist, including the
electrostatic force which causes a thin liquid ®lm to adhere to a
solid. Usually surface waves cannot occur on such thin ®lms
because viscosity inhibits their motion. However, in the special
case of thin ®lms of super¯uid 4He, surface waves do exist and are
called `third sound'. Here we report the detection of similar
surface waves in thin ®lms of super¯uid 3He. We describe studies
of the speed of these waves, the properties of the surface force, and
the ®lm's super¯uid density.

Super¯uid 3He can be described by a `two ¯uid' model4 where the
liquid is considered to be two interpenetrating ¯uids: a normal ¯uid
component and a super¯uid component. Each component has a
mass density fraction, rn/r and rs/r respectively, and is governed by
a different equation of motion. In particular, the super¯uid com-
ponent ¯ows without viscosity while the normal component
experiences viscous drag. This `two ¯uid' nature allows several
different types of acoustic phenomena to exist. For example,
oscillations with both components moving in-phase are called
®rst sound, while out-of-phase oscillations are called second sound.

Third sound5,6 is the name given to a surface wave travelling on a
thin super¯uid ®lm. Here, the super¯uid component oscillates
parallel to the substrate while the normal-¯uid component is
held stationary by viscosity, as shown schematically in Fig. 1a.
A typical wave amplitude is 0.1 nm. In the simplest case, the speed of
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a third-sound wave takes the form5;

c3 �

�������������
hrsi
r

Fd

s
�1�

where d is the ®lm thickness, hrsi is the super¯uid density averaged
over d, r is the density of the liquid, and F is the van der Waals force
per unit mass at the ®lm's surface. A possible additional term in
equation (1) associated with speci®c entropy and temperature7 is
negligible for our 3He ®lms.

Third sound has proven to be a powerful probe of fundamental
phenomena in super¯uid 4He. Examples include measurements of
the physics of two-dimensional phase transitions8, the layered
nature of 3He±4He ®lms9, the non-wetting of alkali metals10, the
generation of vortices and high circulation states11, and many other
phenomena12±16. The number and signi®cance of these applications
in 4He has stimulated strong interest in whether similar surface
waves can exist in ®lms of super¯uid 3He17,18.

Several studies have explored the conditions for super¯uidity in
®lms of 3He (refs 19±24), and have shown that it is suppressed when
the ®lm thickness is near the characteristic healing length, y. This is
caused by breaking of p-wave Cooper pairs during scattering from
the microscopically rough substrates. Because for 3He y � 65 nm
(at temperature T � 0 and zero pressure), we use ®lms with
thicknesses near 100 nm.

To search for third sound in 3He we use the apparatus shown
schematically in Fig. 1b. The super¯uid 3He ®lm resides on the ¯at
top surface of a polished copper disk. The basic experimental idea is
to apply oscillating electrical forces to this ®lm thereby exciting
standing waves of third sound, and then to detect capacitively the
surface motion due to these standing waves.

We performed test experiments in this apparatus18, using super-
¯uid 4He with ®lms of thickness near 100 nm, which indicated that
the perimeter of the substrate re¯ects the surface waves. Further, the
spectrum of 4He third sound is consistent with a `®xed' boundary
condition; that is, the surface displacement is zero near the substrate
perimeter. This agrees with several similar experiments, including
the ®rst study6 of third sound in 4He.

For a ®lm of super¯uid 3He, solution of the wave equation with
®xed boundary conditions at the substrate perimeter indicates that
resonant standing-wave modes can exist. These modes are analo-
gous to those in the membrane of a drum head, and their
frequencies f are related to the wave speed c3 by

f m;n � c3

am;n

2pR
�2�

where the integers m and n are called the mode numbers, R is the
radius of the disk, and am,n is the value of the nth zero of the
Bessel function Jm(x); a0;1 � 2:405, a1;1 � 3:832, a0;2 � 5:520,
a1;2 � 7:016, a0;3 � 8:654 specify the ®ve lowest frequency modes
to which this experiment is sensitive. Tests with super¯uid 4He in
the present cell have identi®ed resonances for these ®ve modes.

In a typical series of super¯uid 3He measurements, the cell is
cooled below the temperature where the ®lm becomes super¯uid,
T ®lm

c , with a given ®lm of thickness d on the substrate. The driving-
force frequency is slowly swept from 0.2 Hz to 8 Hz, and the
amplitude of the surface response at each frequency is measured
at the detector. We repeat this frequency sweep at a range of
temperatures. Figure 2a shows the result of a series of such
measurements for a ®lm of d � 233 nm, between 0.32 mK and
0.79 mK. Several resonant modes, whose frequencies vary with
changing temperature, are apparent. Similar spectra were acquired
at ®lm thicknesses, d, of 92, 122, 170, 174, 189, 221, 252, 264 and
281 nm. From these, it is clear that well-de®ned surface-wave modes
do exist in super¯uid 3He, and that we can identify their resonant
frequencies and quality factors. In addition, the frequencies of these
modes fall with rising temperature, and the phenomena disappear

for T . T film
c . These data provide, to our knowledge, the ®rst

evidence for the existence of third sound in super¯uid 3He.
We can use these third-sound signals to probe the physics of the

super¯uid 3He ®lms by measuring the wave speed c3, and by using c3

to obtain the average super¯uid density hrsi/r. First, in order to
assign mode numbers to the peaks shown in Fig. 2a, their frequen-
cies are plotted versus temperature (Fig. 2b). We interpret the
temperature dependence of the frequencies in terms of the simplest
available model, using the following assumptions. First, equations

Drive plate 
Detector plate 

3He film 

3He bath Substrate

 
Capacitive level detector 

h

c3

Copper substrate 

b

a

Heat exchanger 

δ

δ
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Figure 1 Schematic representations of a third-sound wave and of the

experimental apparatus. a, The pro®le of a third-sound wave in which the

`normal-¯uid' fraction of the ®lm is kept in place by viscosity and the `super¯uid'

fraction oscillates parallel to the substrate, with velocity vs. This causes local

variations in the ®lm thickness while allowing a surface wave to propagate at

speed c3. b, A thick horizontal copper disk (radius R � 19:1mm) is positioned in a

container of super¯uid 3He, its polished top surface forming the substrate for the

super¯uid ®lm. From a ®ll line at the bottom of the cell, liquid 3He is introduced to a

distance h below the top of the disk. A ®lm of thickness d forms on the substrate

when the temperature falls below the critical temperature for ®lm super¯uidity,

T®lm
c (which is less than the bulk super¯uid critical temperature Tc � 0:929 mK).

Two plates are placed above the substrate: a 10.1-mm-radius disk and an annular

ring (13.6-mm inner radius and 17.8-mm outer radius). A grounded electrostatic

shield (not shown) is positioned between the two electrodes. The geometry of the

electrode assembly is designed to minimize the creation of standing waves of

third sound on its surfaces. The plates are ,32 mm above the substrate, and are

believed to be tilted so that one side is about 20 mm above the other side. This

provides sensitivity to azimuthally asymmetric modes on the ®lm. The outer

annular electrode is connected to an oscillating voltage of typical amplitude 1 V

superimposed on a largerd.c. voltage, typically 10 V. Due to the dielectric constant

of the liquid (e � 1:0426) this produces an a.c. driving force on the ®lm's surface.

The central disk-shaped electrode is connected to a capacitance bridge that

monitors ®lm thickness changes which are occurring synchronously with the a.c.

excitation. The system's resolution for average ®lm surface displacement is

,30 pmHz-1/2. A coaxial cylindrical capacitor, mounted vertically, measures the

height h from the free surface of the bulk liquid to the substrate. The apparatus is

designed for the generation and detection of third sound in ®lms with a range of

®lm thicknesses near 100 nm, in a cell suitable for refrigeration down to

T , 300 mK. The 3He bath is cooled by a heat exchanger connected to a nuclear

demagnetization refrigerator, and its temperature is measured using pulsed NMR

on 195Pt. As the substrate itself is isolated from electrical ground, thermal contact

from it to the bath is made via a second heat exchanger, installed in the bottom of

the substrate before polishing. The substrate was machined with a regular cutting

tool and then polished to an apparent mirror ®nish by lapping. A series of

diminishing grit sizes down to 0.25 mm were used.



Nature © Macmillan Publishers Ltd 1998

8

letters to nature

556 NATURE | VOL 396 | 10 DECEMBER 1998 | www.nature.com

(1) and (2) are combined to show that the mode frequencies
are proportional to (hrsi/r)1/2. Second, using a Landau±Ginzburg
model24 which states that hrsi=r ~ �1 2 T=T film

c �, we ®nd that the
mode frequencies f m;n ~ �1 2 T=T film

c �1=2. We de®ne T ®lm
c to be the

measured temperature at which the ®lm's motion in response to
applied voltages disappears. The proportionality constant is identi-
®ed by ®tting the predicted frequencies for the third radial mode
(m � 0, n � 3) to the frequencies of the (0,3) mode in the data. The
predicted frequencies for the lower-frequency modes are then
determined, and are shown as the solid lines in Fig. 2b.

The observed spectra clearly have features in common with the
predictions of this simple model, allowing us to identify the mode
numbers for several peaks. But other peaks are not in as good
agreement, indicating that the surface waves are revealing new
complexities in the physics of the 3He ®lm. For example, as T
decreases we observe a behaviour involving the mixing and splitting
of several lower-frequency modes, which is so far unexplained.
Similar behaviour, both in the general agreement of several modes
with the model, and in the unexpected splittings, have been
observed for all other measured ®lm thicknesses.

We use the observed frequencies of the (0,3) modeÐbecause this
mode is clearly identi®able for all ®lms and temperaturesÐto
determine c3. We believe that the (0,3) is most reliable because
geometrically it has the strongest overlap with the drive capacitor

plate. Figure 3a shows the values of c3 deduced from equation (2) for
several ®lm thicknesses, as a function of temperature. These speeds
are very low in comparison with 4He, but they lie in the expected
range for super¯uid 3He. At low temperatures, c3 at ®rst rises with d;
but, when d nears 170 nm, the speed begins to fall again. We believe
that this behaviour arises from the competition between hrsi rising
with d, and the van der Waals force F falling with d.

Figure 2 3He third-sound spectra, and the resonant frequencies as a function of

temperature. a, A typical series of third-sound spectra for several different

temperatures with d � 233 nm. The temperature ranges from 0.79mK, just below

the onset of super¯uidity at T®lm
c for the lowest curve, to 0.32 mK for the highest

curve, with approximately even temperature steps. The curves are shifted

vertically from each other for clarity of presentation. Similar spectra were acquired

at ®lm thicknesses d � 92,122,170,174,189, 221, 252, 264 and 281nm. b, Frequen-

cies of the observed peaks versus T/Tc. The solid lines represent the expected

distribution of the peaks from the simple model described in the text.

Figure 3 The speed of 3He third sound and the associated super¯uid density as a

function of temperature. a, The speed of third-sound waves deduced from

equation (2) for ®lms with d � 92, 122, 174, 233, 252 and 281nm, as a function of

temperature. We show the value of c3 as calculated from the frequency of the (0,3)

mode using equation (2). The calculated values for c3 using the frequencies of the

other modes are in reasonable agreement with the data shown. The standard

deviation for c3 of any particular d and T has a maximum value of 12%. For clarity,

data is shown from only a subset of the measured ®lms, but the speeds

calculated for all the other ®lms are also in good agreement with those shown.

b, The average super¯uid density of the ®lm obtained from the speed of third

sound and equation (1), as a function of temperature for ®lms with d � 92,122,174,

233, 252 and 281 nm. The dashed lines represent the prediction of a model for a

thin 3He-B ®lm with diffusive scattering of the Cooper pairs from the substrate and

specular scattering from the surface of the ®lm for three ®lm thicknesses d � 122,

174 and 281 nm. The solid line is the bulk super¯uid density of 3He at zero

pressure.
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The super¯uid fraction hrsi/r, contains fundamental information
on the wave speed, the thermodynamics of the super¯uid ®lm, and
the effects of disorder. To ®nd hrsi/r from equation (1), we need to
know both d and the van der Waals force F.

The value of F can be determined because the van der Waals
potential U(d) and the gravitational potential are equal at the
surface of the ®lm, that is

U�d� � gh�d� �3�

where h(d) is the height of the ®lm above the bulk surface, and g is
the acceleration due to gravity. This equilibrium occurs because
the entire free surface of a super¯uid is at a constant chemical
potential25. The ®lm thickness is varied by introducing additional
3He to reduce h. We ®nd U(d) by determining d for various heights
h, and ®tting a smooth curve to our data for h(d). Finally, we
calculate the force from F � 2 dU=dd � 2 gdh=dd.

We determine d from the capacitance between the substrate and
the electrode above it. On the basis of comparison between d(h)
measurements in 3He, and those in 4He where both surfaces are
covered, it seems that ®lms of equal thickness reside on both
electrodes. We assume that the electrodes are smooth and ¯at.
Our measured h(d) for 3He can be expressed as h � �a=d�n where
a � �10:0 6 0:4� 3 10 2 9 (in units of metres4/3) and n � 3. This is
in reasonable agreement with previous measurements20 which
found a � �12:0 6 0:5� 3 10 2 9 metres4=3 and n � 3. The height h
is measured using an annular capacitor which varies linearly with
liquid height.

Substituting the measured values of d, F(d) and c3 into equation
(1), we ®nd the values of hrsi/r for the same ®lms as in Fig. 3a. The
results (Fig. 3b) indicate that as the ®lms are made thicker, T ®lm

c rises
(approaching the bulk value Tc). Also, for any given temperature,
hrsi/r rises with increasing ®lm thickness. These observations are as
expected when disorder in the substrate surface causes breaking of
the 3He Cooper pairs22. Suppression of super¯uidity also occurs in
the presence of strong disorder within the bulk liquid, for example,
3He in aerogel26. The dashed lines shown in Fig. 3b are theoretical
predictions27 for the hrsi/r of thin super¯uid 3He-B ®lms
in the presence of disorder, and are in reasonable agreement with
observations for our thickest ®lms.

The quality of agreement between theory and observation for
both the spectrum and hrsi/r, especially for the thickest ®lms, is
further evidence that the 3He third sound is governed by equation
(1). However, several unexpected observations have also been made
with this probe. For ®lms where d , 3y, hrsi/r departs signi®cantly
from predictions and may indicate a change to an A-like phase, or
the approach of true two-dimensionality in this super¯uid28. The
complexity of the spectral features may also re¯ect unanticipated
properties of this system. Although an isotropic super¯uid ®lm like
4He should have no mixing of modes, 3He is an anisotropic super-
¯uid in which several sources of coupling might be possible,
including textural effects, and a Hall effect phenomenon29 due to
the ordering of the angular momentum of the Cooper pairs in the A-
phase. These issues will be addressed in future work.

The observation of third sound in super¯uid 3He opens the door
to the study of a number of important phenomena for which, until
now, no experimental technique was available. These include the
limit on how thin a 3He ®lm can be made and still remain super-
¯uid, the transition to two-dimensional super¯uidity possibly via a
Kosterlitz±Thouless vortex unbinding phase transition28, the super-
¯uid analogue of the quantum Hall effect29, and the potential for
two-dimensional 3He super¯uidity in submonolayer coverages via a
new mechanism30. M
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The ground state of a superconductor is a macroscopic quantum
state that can extend coherently over substantial distances1. As a
result, electrons tunnelling from two different points (separated
by macroscopic length) on the surface of a superconductor remain
coherent in phase and so are able to interfere: this property forms
the basis of superconducting quantum interference devices
(SQUIDs). Another characteristic of electrons tunnelling from a
superconductor is that they are monochromatic, their energy
being determined by the ground-state energy of the supercon-
ducting state. Monochromatic electrons have been observed


